超简单Python画Heatmap-热力图 -plotly库

简介: 超简单Python画Heatmap-热力图 -plotly库

超简单Python画Heatmap热力图 -库plotly

在画热力图之前需要安装一个 Plotly 的第三方库


pip install plotly


推荐一下其他 画图工具 -> 点击 这里


数据解释

导入的数据格式为两个.csv的表格,由于懒惰没有再处理原始数据集了,具体传值赋值 pandas 均能实现。


其中的 T2_All_Value 代表多列 z轴 ,x_y_axis 代表对应z轴的 x、y坐标。


T2_All_Value


image.png

image.png

x_y_axis

image.png

上代码

import pandas as pd
from tqdm import tqdm
import plotly.graph_objects as go
# 关于取xyz的值做矩阵
df_all_T2 = pd.read_csv('T2_All_Value.csv', index_col=0)  # index_col=0用于消除unnamed:0列
# 读取T2数据集的行列数
q1 = df_all_T2.shape[1]  # 列数
r1 = df_all_T2.shape[0]  # 行数
print('T2有%r行,%r列。' % (r1, q1))
# 读取x和y轴数据
df_x_y = pd.read_csv('x_y_axis.csv')
# 获取表格的行列数q,r
q2 = df_x_y.shape[1]  # 列数
r2 = df_x_y.shape[0]  # 行数
print('x_y有%r行,%r列。' % (r2, q2))
list_ix = []
list_iy = []
list_iz = []
def choose_layer(layers):
    for xx in range(r2 + 1):
        if xx < r2:
            IIx = df_x_y.iloc[xx, 0]
            IIy = df_x_y.iloc[xx, 1]
            IIz = df_all_T2.iloc[xx, layers]
            # print('[x, y, z] = [%r, %r, %r]' % (IIx, IIy, IIz))
            # 将每个坐标轴存入一个list中
            list_ix.append(IIx)
            list_iy.append(IIy)
            list_iz.append(IIz)
    # print('本次的数据:', one_data)
    mmx = list_ix
    mmy = list_iy
    mmz = list_iz
    return mmx, mmy, mmz

上面Function的到输入数据,每个mmx、mmy、mmz代表的是x-y-z轴的数据列表,类型为 list

def get_data(mmxx, mmyy, mmzz):
    df = pd.DataFrame(data=[v for v in zip(mmxx, mmyy, mmzz)], columns=['x', 'y', 'Value'])
    return df

上一段 get_data() 主要将输入数据变成DataFrame的格式输出。

主函数 代码如下:

if __name__ == '__main__':
    # SIZE = 100
    for i in range(1, q1):
        mmx, mmy, mmz = choose_layer(i)
        df = get_data(mmxx=mmx, mmyy=mmy, mmzz=mmz)
        layout = go.Layout(
            # plot_bgcolor='red',  # 图背景颜色
            paper_bgcolor='white',  # 图像背景颜色
            autosize=True,
            # width=2000,
            # height=1200,
            title=str(i) + '-热力图',
            titlefont=dict(size=30, color='gray'),
            # 图例相对于左下角的位置
            legend=dict(
                x=0.02,
                y=0.02
            ),
            # x轴的刻度和标签
            xaxis=dict(title='x坐标轴数据',  # 设置坐标轴的标签
                       titlefont=dict(color='red', size=20),
                       tickfont=dict(color='blue', size=18, ),
                       tickangle=45,  # 刻度旋转的角度
                       showticklabels=True,  # 是否显示坐标轴
                       # 刻度的范围及刻度
                       # autorange=False,
                       # range=[0, 100],
                       # type='linear',
                       ),
            # y轴的刻度和标签
            yaxis=dict(title='y坐标轴数据',  # 坐标轴的标签
                       titlefont=dict(color='blue', size=18),  # 坐标轴标签的字体及颜色
                       tickfont=dict(color='green', size=20, ),  # 刻度的字体大小及颜色
                       showticklabels=True,  # 设置是否显示刻度
                       tickangle=-45,
                       # 设置刻度的范围及刻度
                       autorange=True,
                       # range=[0, 100],
                       # type='linear',
                       ),
        )
        fig = go.Figure(data=go.Heatmap(
            showlegend=True,
            name='Value',
            x=df['x'],
            y=df['y'],
            z=df['Value'],
            type='heatmap',
        ),
            layout=layout
        )
        fig.update_layout(margin=dict(t=100, r=150, b=100, l=100), autosize=True)
        fig.show()

最终热力图效果如图所示

image.png

右上角有交互功能,可 放大缩小保存移动等系列操作。

image.png

完整代码

import pandas as pd
from tqdm import tqdm
import plotly.graph_objects as go
# 关于取xyz的值做矩阵
df_all_T2 = pd.read_csv('T2_All_Value.csv', index_col=0)  # index_col=0用于消除unnamed:0列
# 读取T2数据集的行列数
q1 = df_all_T2.shape[1]  # 列数
r1 = df_all_T2.shape[0]  # 行数
print('T2有%r行,%r列。' % (r1, q1))
# 读取x和y轴数据
df_x_y = pd.read_csv('x_y_axis.csv')
# 获取表格的行列数q,r
q2 = df_x_y.shape[1]  # 列数
r2 = df_x_y.shape[0]  # 行数
print('x_y有%r行,%r列。' % (r2, q2))
list_ix = []
list_iy = []
list_iz = []
one_data = []
all_data = []
for xx in range(r2 + 1):
    if xx < r2:
        IIx = df_x_y.iloc[xx, 0]
        IIy = df_x_y.iloc[xx, 1]
        IIz = df_all_T2.iloc[xx, 7]
        # one_data.append(IIx)
        # print('ddddddd:', one_data)
        # all_data.append(one_data)
        # print('[x, y, z] = [%r, %r, %r]' % (IIx, IIy, IIz))
        # 将每个坐标轴存入一个list中
        list_ix.append(IIx)
        list_iy.append(IIy)
        list_iz.append(IIz)
# print('本次的数据:', one_data)
print('xxx:', list_ix)
print('yyy', list_iy)
print('zzz', list_iz)
mmx = list_ix
mmy = list_iy
mmz = list_iz
print('duoshaogehsu', len(mmx))
long = len(mmx)  # 取LIST长度
# for ir in tqdm(range(long)):
#     # for ie in ():
for ie, iu, io in tqdm(zip(mmx, mmy, mmz)):
    # print('shenmgui:', ie)
    one_data.append(ie)
    # print('aaaaaa:',one_data)
    one_data.append(iu)
    # print('ssssss:', one_data)
    one_data.append(io)
    # print('cccccc:', one_data)
    # time.sleep(1)
    all_data.append(one_data)
    # print('牛逼的循环:', all_data)
    one_data = []
print('dasd asdas :', all_data)
data = all_data
xdata = list(set(mmx))
ydata = list(set(mmy))
bx = []
by = []
print('changdu1:', len(xdata))
print('changdu2:', len(ydata))
print('changdu3:', len(mmz))
for i_i in xdata:
    bx.append(str(i_i))
for i_j in ydata:
    by.append(str(i_j))
print('字符串类型的xdata:', bx)
print('字符串类型的ydata:', by)
xdata = bx
ydata = by
def get_data(mmxx, mmyy, mmzz):
    df = pd.DataFrame(data=[v for v in zip(mmxx, mmyy, mmzz)], columns=['x', 'y', 'z'])
    return df
if __name__ == '__main__':
    # SIZE = 100
    df = get_data(mmxx=mmx, mmyy=mmy, mmzz=mmz)
    layout = go.Layout(
        # plot_bgcolor='red',  # 图背景颜色
        paper_bgcolor='white',  # 图像背景颜色
        autosize=True,
        # width=2000,
        # height=1200,
        title='T2热力图',
        titlefont=dict(size=30, color='gray'),
        # 图例相对于左下角的位置
        legend=dict(
            x=0.02,
            y=0.02
        ),
        # x轴的刻度和标签
        xaxis=dict(title='x坐标轴数据',  # 设置坐标轴的标签
                   titlefont=dict(color='red', size=20),
                   tickfont=dict(color='blue', size=18, ),
                   tickangle=45,  # 刻度旋转的角度
                   showticklabels=True,  # 是否显示坐标轴
                   # 刻度的范围及刻度
                   # autorange=False,
                   # range=[0, 100],
                   # type='linear',
                   ),
        # y轴的刻度和标签
        yaxis=dict(title='y坐标轴数据',  # 坐标轴的标签
                   titlefont=dict(color='blue', size=18),  # 坐标轴标签的字体及颜色
                   tickfont=dict(color='green', size=20, ),  # 刻度的字体大小及颜色
                   showticklabels=True,  # 设置是否显示刻度
                   tickangle=-45,
                   # 设置刻度的范围及刻度
                   autorange=True,
                   # range=[0, 100],
                   # type='linear',
                   ),
    )
    fig = go.Figure(data=go.Heatmap(
        showlegend=True,
        name='Value',
        x=df['x'],
        y=df['y'],
        z=df['z'],
        type='heatmap',
    ),
        layout=layout
    )
    fig.update_layout(margin=dict(t=100, r=150, b=100, l=100), autosize=True)
    fig.show()



相关文章
|
1月前
|
存储 人工智能 测试技术
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
本文介绍如何使用LangChain结合DeepSeek实现多轮对话,测开人员可借此自动生成测试用例,提升自动化测试效率。
302 125
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
|
1月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
116 0
|
3月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
15天前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
102 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
24天前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
218 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
2月前
|
运维 Linux 开发者
Linux系统中使用Python的ping3库进行网络连通性测试
以上步骤展示了如何利用 Python 的 `ping3` 库来检测网络连通性,并且提供了基本错误处理方法以确保程序能够优雅地处理各种意外情形。通过简洁明快、易读易懂、实操性强等特点使得该方法非常适合开发者或系统管理员快速集成至自动化工具链之内进行日常运维任务之需求满足。
158 18
|
2月前
|
机器学习/深度学习 API 异构计算
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
JAX是Google开发的高性能数值计算库,旨在解决NumPy在现代计算需求下的局限性。它不仅兼容NumPy的API,还引入了自动微分、GPU/TPU加速和即时编译(JIT)等关键功能,显著提升了计算效率。JAX适用于机器学习、科学模拟等需要大规模计算和梯度优化的场景,为Python在高性能计算领域开辟了新路径。
239 0
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
|
2月前
|
数据采集 存储 Web App开发
Python爬虫库性能与选型实战指南:从需求到落地的全链路解析
本文深入解析Python爬虫库的性能与选型策略,涵盖需求分析、技术评估与实战案例,助你构建高效稳定的数据采集系统。
290 0
|
2月前
|
存储 监控 安全
Python剪贴板监控实战:clipboard-monitor库的深度解析与扩展应用
本文介绍了基于Python的剪贴板监控技术,结合clipboard-monitor库实现高效、安全的数据追踪。内容涵盖技术选型、核心功能开发、性能优化及实战应用,适用于安全审计、自动化办公等场景,助力提升数据管理效率与安全性。
129 0

热门文章

最新文章

推荐镜像

更多