Python运用webbrowser打开PyEcharts生成的html文件

简介: Python运用webbrowser打开PyEcharts生成的html文件

话不多说,直接上代码

这里 也有更多pyecharts的代码~

示例

调用库

import pandas as pd
import time
from functools import partial
from PyQt5.QtWidgets import *
from PyQt5 import QtCore, QtGui, QtWidgets
from pyecharts import options as opts
from pyecharts.charts import Kline, Line, Bar, Grid
import webbrowser as wb

K线图、输出在默认浏览器显示

# 移动平均数计算
def moving_average(data, day_count):
    data = data.values[:, 0]
    result = []
    for i in range(len(data)):
        start_day_index = i - day_count + 1
        if start_day_index <= 0:
            start_day_index = 0
        justified_day_count = i - start_day_index + 1
        mean = data[start_day_index:i + 1].sum() / justified_day_count
        result.append(mean)
    return result
# k线             --项目需求:已实现--
def show_kline(csv_name):
    # 读取.csv文件,
    stock_code = 'Brent_OIL'
    stock_data = pd.read_csv(csv_name, encoding='gb2312')
    # 将文件内容按照by=[‘date’]内容进行排序
    stock_data = stock_data.sort_values(by=["date"], ascending=[True], inplace=False)
    stock_data_cleared = stock_data[stock_data['close'] > 0]
    stock_name = stock_data_cleared["position"][0]
    stock_data_extracted = stock_data_cleared[["open", "close", "low", "high", "volume", "date"]]
    kline = (
        Kline()
            .add_xaxis(stock_data_extracted["date"].values.tolist())
            .add_yaxis("K线图", stock_data_extracted.iloc[:, :4].values.tolist())
            .set_global_opts(
            xaxis_opts=opts.AxisOpts(is_scale=True, is_show=False),
            # axis_opts=opts.AxisOpts(is_scale=True,min_=0), #y轴起始坐标可以设为0
            yaxis_opts=opts.AxisOpts(is_scale=True),  # y轴起始坐标可自动调整
            #title_opts=opts.TitleOpts(title="价格", subtitle=stock_name + "\n" + stock_code, pos_top="20%"),
            axispointer_opts=opts.AxisPointerOpts(
                is_show=True,
                link=[{"xAxisIndex": "all"}],
                label=opts.LabelOpts(background_color="#777"),
            ),
            datazoom_opts=[  # 设置zoom参数后即可缩放
                opts.DataZoomOpts(
                    is_show=True,
                    type_="inside",
                    xaxis_index=[0, 1],  # 设置第0轴和第1轴同时缩放
                    range_start=0,
                    range_end=100,
                ),
                opts.DataZoomOpts(
                    is_show=True,
                    xaxis_index=[0, 1],
                    type_="slider",
                    pos_top="90%",
                    range_start=0,
                    range_end=100,
                ),
            ],
        )
    )
    # 移动平均线
    line = (
        Line()
            .add_xaxis(xaxis_data=stock_data_extracted["date"].values.tolist())
            .add_yaxis(
            series_name="MA5",
            y_axis=moving_average(stock_data_extracted[["close"]], 5),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
            .add_yaxis(
            series_name="MA10",
            y_axis=moving_average(stock_data_extracted[["close"]], 10),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
            .add_yaxis(
            series_name="MA30",
            y_axis=moving_average(stock_data_extracted[["close"]], 30),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
            .add_yaxis(
            series_name="MA60",
            y_axis=moving_average(stock_data_extracted[["close"]], 60),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
            .add_yaxis(
            series_name="MA120",
            y_axis=moving_average(stock_data_extracted[["close"]], 120),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
            .add_yaxis(
            series_name="MA240",
            y_axis=moving_average(stock_data_extracted[["close"]], 240),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
            .add_yaxis(
            series_name="MA360",
            y_axis=moving_average(stock_data_extracted[["close"]], 360),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
            .set_global_opts(xaxis_opts=opts.AxisOpts(type_="category"))
    )
    # 将K线图和移动平均线显示在一个图内
    kline.overlap(line)
    # 成交量柱形图
    x = stock_data_extracted[["date"]].values[:, 0].tolist()
    y = stock_data_extracted[["volume"]].values[:, 0].tolist()
    bar = (
        Bar()
            .add_xaxis(x)
            .add_yaxis("成交量", y, label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=opts.ItemStyleOpts(color="#008080"))
            .set_global_opts(title_opts=opts.TitleOpts(title="成交量", pos_top="70%"),
                             legend_opts=opts.LegendOpts(is_show=False),
                             )
    )
    # 使用网格将多张图标组合到一起显示
    grid_chart = Grid()
    grid_chart.add(
        kline,
        grid_opts=opts.GridOpts(pos_left="15%", pos_right="8%", height="55%"),
    )
    grid_chart.add(
        bar,
        grid_opts=opts.GridOpts(pos_left="15%", pos_right="8%", pos_top="70%", height="20%"),
    )
    htl = csv_name + ".html"
    grid_chart.render(htl)
    wb.open(htl)

主函数

def click_success(self):
    print("数据获取成功!")
    csv_name1 = 'outside_brent_oil.csv'
    outside_history_brent_oil_data().to_csv(csv_name1, index=False)
    show_kline(csv_name1)
    # html_success()
def click_success_3(self):
    print("数据获取成功!")
    csv_name2 = 'outside_newyork_oil.csv'
    outside_history_newyork_oil_data().to_csv(csv_name2, index=False)
    show_kline(csv_name2)
def click_success_4(self):
    print("数据获取成功!")
    csv_name3 = 'outside_newyork_gas.csv'
    outside_history_newyork_natural_gas_data().to_csv(csv_name3, index=False)
    show_kline(csv_name3)
if __name__ == '__main__':
    app = QApplication(sys.argv)
    MainWindow = QMainWindow()
    ui = Ui_MainWindow()
    ui.setupUi(MainWindow)
    MainWindow.show()
     # 外盘期货
    ui.pushButton.clicked.connect(click_success)           # 布伦特原油期货分析图
    ui.pushButton_3.clicked.connect(click_success_3)       # 纽约原油期货分析图
    ui.pushButton_4.clicked.connect(click_success_4)       # 纽约天然气期货分析图
    sys.exit(app.exec_())

其中实现跳转代码为

    htl = csv_name + ".html"
    grid_chart.render(htl)
    wb.open(htl)


相关文章
|
1月前
|
数据可视化 Linux iOS开发
Python脚本转EXE文件实战指南:从原理到操作全解析
本教程详解如何将Python脚本打包为EXE文件,涵盖PyInstaller、auto-py-to-exe和cx_Freeze三种工具,包含实战案例与常见问题解决方案,助你轻松发布独立运行的Python程序。
601 2
|
15天前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
102 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
24天前
|
监控 机器人 编译器
如何将python代码打包成exe文件---PyInstaller打包之神
PyInstaller可将Python程序打包为独立可执行文件,无需用户安装Python环境。它自动分析代码依赖,整合解释器、库及资源,支持一键生成exe,方便分发。使用pip安装后,通过简单命令即可完成打包,适合各类项目部署。
|
2月前
|
缓存 数据可视化 Linux
Python文件/目录比较实战:排除特定类型的实用技巧
本文通过四个实战案例,详解如何使用Python比较目录差异并灵活排除特定文件,涵盖基础比较、大文件处理、跨平台适配与可视化报告生成,助力开发者高效完成目录同步与数据校验任务。
114 0
|
3月前
|
编译器 Python
如何利用Python批量重命名PDF文件
本文介绍了如何使用Python提取PDF内容并用于文件重命名。通过安装Python环境、PyCharm编译器及Jupyter Notebook,结合tabula库实现PDF数据读取与处理,并提供代码示例与参考文献。
|
3月前
|
编译器 Python
如何利用Python批量重命名文件
本文介绍了如何使用Python和PyCharm对文件进行批量重命名,包括文件名前后互换、按特定字符调整顺序等实用技巧,并提供了完整代码示例。同时推荐了第三方工具Bulk Rename Utility,便于无需编程实现高效重命名。适用于需要处理大量文件命名的场景,提升工作效率。
|
3月前
|
安全 Linux 网络安全
Python极速搭建局域网文件共享服务器:一行命令实现HTTPS安全传输
本文介绍如何利用Python的http.server模块,通过一行命令快速搭建支持HTTPS的安全文件下载服务器,无需第三方工具,3分钟部署,保障局域网文件共享的隐私与安全。
723 0
|
3月前
|
数据管理 开发工具 索引
在Python中借助Everything工具实现高效文件搜索的方法
使用上述方法,你就能在Python中利用Everything的强大搜索能力实现快速的文件搜索,这对于需要在大量文件中进行快速查找的场景尤其有用。此外,利用Python脚本可以灵活地将这一功能集成到更复杂的应用程序中,增强了自动化处理和数据管理的能力。
255 0
|
1月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
205 102
|
1月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
222 104

热门文章

最新文章

推荐镜像

更多