Spark-stream基础---sparkStreaming和Kafka整合wordCount单词计数

简介: sprak-stream与kafak整合wordCount在IDEA上接收kafka传来的数据,并进行单词统计


项目

sprak-stream与kafak整合wordCount

在IDEA上接收kafka传来的数据,并进行单词统计

linux端打开kafka

//1.先打开zookeeper(3台)
zkServer.sh start 
//2.在打开kafka(3台)
 bin/kafka-server-start.sh config/server.properties &
//3.创建生产者
bin/kafka-console-producer.sh --broker-list hou-01:9092 --topic wc
//4.控制台输入任意单词

IDEA添加依赖

 

    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
        <version>${spark.version}</version>
    </dependency>

1.0版本单词计数

package day08
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Milliseconds, StreamingContext}
/*
需求:kafka消费数据到sparkStreaming计算
 */
object KafkaWordCount {
  def main(args: Array[String]): Unit = {
    //1.创建StreamingContext
    val conf: SparkConf = new SparkConf().setAppName("kafkaWordCount").setMaster("local[2]")
    val ssc: StreamingContext = new StreamingContext(conf,Milliseconds(2000))
    //2.接入kafka数据源(如何访问kafka集群?zookeeper)
    val zkQuorm: String = "192.168.64.111,192.168.64.112,192.168.64.113"
    //访问组
    val groupID = "g1"
    //访问主题
    val topic: Map[String, Int] = Map[String,Int]("wc"->1)
    //创建Dstream
    val kafkaStream: ReceiverInputDStream[(String, String)] = KafkaUtils
      .createStream(ssc,zkQuorm,groupID,topic)
    //3.处理数据
    val data: DStream[String] = kafkaStream.map(_._2)
    //4.启动streaming程序
    val r: DStream[(String, Int)] = data.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)
    r.print()
    ssc.start()
    //5.关闭资源
    ssc.awaitTermination()
  }
}

结果

image.png

2.0版本单词计数

将历史记录保存下来,显示出来,主要使用dataFunc

package day08
import org.apache.spark.{HashPartitioner, SparkConf}
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Milliseconds, StreamingContext}
object StatusKafkaWordCount {
  //保持历史状态 wc 单词,次数 聚合的key
  //第一个类型:单词,第二个类型:在每一个分区中出现的次数累加的结果
  //第三个类型:是以前的结果
  val updateFunc = (iter:Iterator[(String,Seq[Int],Option[Int])]) => {
    //总的次数= 当前出现的次数 + 以前返回的结果
    iter.map(t => (t._1, t._2.sum + t._3.getOrElse(0)))
  }
  def main(args: Array[String]): Unit = {
    //1.创建程序入口
    val conf: SparkConf = new SparkConf().setAppName("StateKafkaWC").setMaster("local[2]")
    val ssc: StreamingContext = new StreamingContext(conf,Milliseconds(2000))
    //2.需要累加历史数据 checkpoints
    ssc.checkpoint("hdfs://192.168.64.111:9000/ck")
    //3.接入kafka数据源
    val zkQuorm: String = "192.168.64.111,192.168.64.112,192.168.64.113"
    //访问组
    val groupID = "g1"
    //访问主题
    val topic: Map[String, Int] = Map[String,Int]("wc"->1)
    //创建Dstream
    val kafkaStream: ReceiverInputDStream[(String, String)] = KafkaUtils
      .createStream(ssc,zkQuorm,groupID,topic)
    //4.处理数据
    val data: DStream[String] = kafkaStream.map(_._2)
    //5.加入历史数据计算
    val r: DStream[(String, Int)] = data.flatMap(_.split(" ")).map((_, 1))
      //参数1:自定义业务函数 参数2:分区器设置 参数3:是否使用
      .updateStateByKey(updateFunc, new HashPartitioner(ssc.sparkContext.defaultParallelism), true)
    //6.打印
    r.print()
    //7.启动程序
    ssc.start()
    //8.关闭资源
    ssc.awaitTermination()
  }
}

结果

image.png

相关文章
|
1月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
42 0
|
1月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
92 0
|
6月前
|
消息中间件 分布式计算 Kafka
SparkStreaming(SparkStreaming概述、入门、Kafka数据源、DStream转换、输出、关闭)
SparkStreaming(SparkStreaming概述、入门、Kafka数据源、DStream转换、输出、关闭)(一)
102 5
|
1月前
|
分布式计算 大数据 Java
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
26 1
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
|
1月前
|
消息中间件 分布式计算 Kafka
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
56 0
|
5月前
|
分布式计算 资源调度 Java
Scala+Spark+Hadoop+IDEA实现WordCount单词计数,上传并执行任务(简单实例-下)
Scala+Spark+Hadoop+IDEA实现WordCount单词计数,上传并执行任务(简单实例-下)
60 0
|
5月前
|
分布式计算 Hadoop Scala
Scala +Spark+Hadoop+Zookeeper+IDEA实现WordCount单词计数(简单实例-上)
Scala +Spark+Hadoop+Zookeeper+IDEA实现WordCount单词计数(简单实例-上)
51 0
|
5月前
|
消息中间件 分布式计算 关系型数据库
使用Apache Spark从MySQL到Kafka再到HDFS的数据转移
使用Apache Spark从MySQL到Kafka再到HDFS的数据转移
|
5月前
|
消息中间件 分布式计算 Kafka
利用Spark将Kafka数据流写入HDFS
利用Spark将Kafka数据流写入HDFS
|
分布式计算 Java Scala
181 Spark IDEA中编写WordCount程序
181 Spark IDEA中编写WordCount程序
63 0
下一篇
无影云桌面