利用python进行吃鸡(绝地求生)可视化分析

简介: 学习一段时间python了,那么得拿些好玩的东西练练手,这里通过加载几万局的吃鸡数据,来对吃鸡胜率进行可视化分析


既然学习一段时间python了,那么得拿些好玩的东西练练手,这里通过加载几万局的吃鸡数据,来对吃鸡胜率进行可视化分析。

通过绘制击杀地图和被击杀地图查找LYB的藏身之地

下面贴上代码,和分析。

#这个代码,是通过展示地图击杀和死亡最多的地方,让我们可以挑选出有哪些好玩的地方
#加载模块
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from scipy.misc.pilutil import imread
f = open(r'F:\spyder\kernel项目\pubg\PUBG_MatchData_Flattened.tsv')#添加路径
df = pd.read_csv(f,sep = '\t')
#edf和mdf是两个地图,下面把两张地图分开进行处理
edf = df.loc[df['map_id'] == 'ERANGEL']
mdf = df.loc[df['map_id'] == 'MIRAMAR']
#print(edf.head())
def killer_victim_df_maker(df):
    #挑出地图中击杀和被杀玩家的坐标
    df = edf
    victim_x_df = df.filter(regex = 'victim_position_x')
    victim_y_df = df.filter(regex = 'victim_position_y')
    killer_x_df = df.filter(regex = 'killer_position_x')
    killer_y_df = df.filter(regex = 'killer_position_y')
    #ravel()将多维矩阵变成一维
    victim_x_s = pd.Series(victim_x_df.values.ravel('F'))
    victim_y_s = pd.Series(victim_y_df.values.ravel('F'))
    killer_x_s = pd.Series(killer_x_df.values.ravel('F'))
    killer_y_s = pd.Series(killer_y_df.values.ravel('F'))
    vdata = {'x':victim_x_s, 'y':victim_y_s}
    kdata = {'x':killer_x_s, 'y':killer_y_s}
    #dropna(how = 'any')删除带nan的行
    #再留下坐标等于0(在边界上的异常数据)剔除
    victim_df = pd.DataFrame(data = vdata).dropna(how = 'any')
    victim_df = victim_df[victim_df['x'] > 0]
    killer_df = pd.DataFrame(data = kdata).dropna(how = 'any')
    killer_df = killer_df[killer_df['x'] > 0]
    return killer_df, victim_df
ekdf,evdf = killer_victim_df_maker(edf)
mkdf,mvdf = killer_victim_df_maker(mdf)
# print(ekdf.head())#在森林击杀的坐标数据
# print(evdf.head())#在森林被杀的坐标数据
# print(mkdf.head())
# print(mvdf.head())
# print(len(ekdf), len(evdf), len(mkdf), len(mvdf))
#将dataframe转换成numpy array
plot_data_ev = evdf[['x','y']].values
plot_data_ek = ekdf[['x','y']].values
plot_data_mv = mvdf[['x','y']].values
plot_data_mk = mkdf[['x','y']].values
#将获得的坐标数据与地图上的坐标数据进行匹配
plot_data_ev = plot_data_ev * 4040 /800000
plot_data_ek = plot_data_ek * 4040 /800000
plot_data_mv = plot_data_mv * 976 /800000
plot_data_mk = plot_data_mk * 976 /800000
#加载模块
from scipy.ndimage.filters import gaussian_filter
import matplotlib.cm as cm
from matplotlib.colors import Normalize
#热力图函数
def heatmap(x, y, s, bins = 100):
#    x = plot_data_ev[:,0]
#    y = plot_data_ev[:,1]
#    s = 1.5
#    bins = 800
    #np.histogram2d()将两列数值转为矩阵
    heatmap, xedges, yedges = np.histogram2d(x, y, bins = bins)
    #高斯锐化模糊对象
    heatmap = gaussian_filter(heatmap, sigma = s)
    extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]
    return heatmap.T, extent
#读取森林地图底图
#Normalize归一化
#np.clip(x,a,b)将x中小于a的值设为a,大于b的值设为b
#cm.bwr 蓝白红
bg = imread('erangel.jpg')
hmap, extent = heatmap(plot_data_ev[:,0], plot_data_ev[:,1], 1.5, bins =800)
alphas = np.clip(Normalize(0, hmap.max()/100, clip=True)(hmap)*1.5,0.0,1.)
colors = Normalize(hmap.max()/100, hmap.max()/20, clip=True)(hmap)
colors = cm.bwr(colors)
colors[..., -1] = alphas
hmap2, extent2 = heatmap(plot_data_ek[:,0],plot_data_ek[:,1],1.5, bins = 800)
alphas2 = np.clip(Normalize(0, hmap2.max()/100, clip = True)(hmap2)*1.5, 0.0, 1.)
colors2 = Normalize(hmap2.max()/100, hmap2.max()/20, clip=True)(hmap2)
colors2 = cm.RdBu(colors2)
colors2[...,-1] = alphas2
#'森林死亡率图'
fig, ax = plt.subplots(figsize = (24,24))
ax.set_xlim(0, 4096);ax.set_ylim(0, 4096)
ax.imshow(bg)
ax.imshow(colors, extent = extent, origin = 'lower', cmap = cm.bwr, alpha = 1)
#ax.imshow(colors2, extent = extent2, origin = 'lower', cmap = cm.RdBu, alpha = 0.5)
plt.gca().invert_yaxis()
plt.title('森林地图死亡率图')

image.png

从图中可以看出来,港口,军事基地,p城,学校等这些红色的地方伤亡人数最大,而且很明显能看出下岛的两座桥上网率也很大,想来钢枪还是躲开人群都可以借鉴

#森林击杀图
fig, ax = plt.subplots(figsize = (24,24))
ax.set_xlim(0, 4096); ax.set_ylim(0, 4096)
ax.imshow(bg)
ax.imshow(colors2, extent = extent2, origin = 'lower', cmap = cm.RdBu, alpha = 1)
plt.gca().invert_yaxis()
plt.colorbar()
plt.title('森林地图击杀率图')

image.png

这是森林击杀图,和森林死亡图基本重合,有人在的被击杀的地方就肯定有人击杀,不过要是仔细看的话,还有一点的差异,这便是LYB的藏身之地。

#沙漠地图
bg = imread('miramar.jpg')
hmap, extent = heatmap(plot_data_mv[:,0], plot_data_mv[:,1], 1.5, bins = 800)
alphas = np.clip(Normalize(0, hmap.max()/200, clip=True)(hmap2)*1.5, 0.0, 1.)
colors2 = Normalize(hmap2.max()/100, hmap2.max()/20, clip=True)(hmap2)
colors2 = cm.rainbow(colors2)
colors2[..., -1] = alphas2
hmap2, extent2 = heatmap(plot_data_mv[:,0], plot_data_mv[:,1], 1.5, bins = 800)
alphas2 = np.clip(Normalize(0, hmap2.max()/200, clip=True)(hmap2)*1.5, 0.0, 1.)
colors = Normalize(hmap.max()/100, hmap.max()/20, clip=True)(hmap)
colors = cm.rainbow(colors)
colors[..., -1] = alphas
a = colors2[...,-1]
colors3 = colors2
colors3[...,-1] = np.clip(abs(colors2[...,-1]-colors[...,-1]),0.0,1.)
np.mean(colors2[...,-1]-colors[...,-1])
#沙漠LYB图
fig, ax = plt.subplots(figsize = (24,24))
ax.set_xlim(0, 1000);ax.set_ylim(0, 1000)
ax.imshow(bg)
#ax.imshow(colors, extent = extent, origin = 'lower', cmap = cm.Blues, alpha = 0.5)
ax.imshow(colors3, extent = extent2, origin = 'lower', cmap = cm.Reds, alpha = 0.5)
plt.gca().invert_yaxis()
plt.title('沙漠地图击杀率图')
#通过对比击杀率和死亡率,寻找lyb藏身之地
#color3,击杀率大于死亡率的地方

image.png

'''
在查看上面的热图时,重要的是要记住蓝圈对整体死亡的影响。
 地图中心区域的许多紫色斑点可能是由于区域向内推动玩家! 
 同样,通过查看时间片可以稍微减轻这种情况。 
 我将创建另一个内核来执行此操作,因为它需要更改此内核的第一个代码块。
 在此之前,让我们尝试查看每个垃圾箱中的杀死率。
 首先,让我们定义一个除法函数,这样我们就不会除以0。
'''
def divbutnotbyzero(a, b):
    c = np.zeros(a.shape)
    for i, row in enumerate(b):
        for j, el in enumerate(row):
            if el == 0:#如果击杀率等于0的话
                c[i][j] = a[i][j]#c值就等于死亡率的值
            else:
                c[i][j] = a[i][j]/el#击杀/死亡
    return c
bg = imread('erangel.jpg')
hmap, extent = heatmap(plot_data_ev[:,0], plot_data_ev[:,1], 0, bins = 800)
hmap2, extent2 = heatmap(plot_data_ek[:,0], plot_data_ek[:,1], 0, bins = 800)
hmap3 = divbutnotbyzero(hmap, hmap2)
alphas = np.clip(Normalize(0, hmap3.max()/100, clip=True)(hmap)*1.5, 0.0,1.)
colors = Normalize(hmap3.max()/100, hmap3.max()/20, clip=True)(hmap)
colors = cm.rainbow(colors)
colors[...,-1] = alphas
fig, ax = plt.subplots(figsize = (24, 24))
ax.set_xlim(0,4096); ax.set_ylim(0, 4096)
ax.imshow(bg)
ax.imshow(colors, extent = extent, origin = 'lower', cmap = cm.rainbow, alpha = 0.5)
plt.gca().invert_yaxis()
'''
Pretty cool! Notably, the typical "hot zones" arent
 the only places for getting a good kill/death ratio.
 Anywhere that you are seeing red is a pretty good spot to land. 
 Let's print the k/d mean:
     太酷了! 值得注意的是,典型的“热区”并不是获得良好杀伤/死亡率的唯一场所。 
     你看到红色的任何地方都是降落的好地方。 让我们打印k / d的意思是:
'''
print(hmap3.mean())
bg = imread('miramar.jpg')
hmap, extent = heatmap(plot_data_mv[:,0], plot_data_mv[:,1], 0, bins=800)
hmap2, extent2 = heatmap(plot_data_mk[:,0], plot_data_mk[:,1], 0, bins=800)
hmap3 = divbutnotbyzero(hmap,hmap2)
alphas = np.clip(Normalize(0, hmap3.max()/100, clip=True)(hmap)*1.5, 0.0, 1.)
colors = Normalize(hmap3.max()/100, hmap3.max()/20, clip=True)(hmap)
colors = cm.rainbow(colors)
colors[..., -1] = alphas
fig, ax = plt.subplots(figsize=(24,24))
ax.set_xlim(0, 1000); ax.set_ylim(0, 1000)
ax.imshow(bg)
ax.imshow(colors, extent=extent, origin='lower', cmap=cm.rainbow, alpha=0.5)
plt.gca().invert_yaxis()

image.png


相关文章
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
61 4
|
14天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
1月前
|
数据采集 数据可视化 数据挖掘
基于Python的数据分析与可视化实战
本文将引导读者通过Python进行数据分析和可视化,从基础的数据操作到高级的数据可视化技巧。我们将使用Pandas库处理数据,并利用Matplotlib和Seaborn库创建直观的图表。文章不仅提供代码示例,还将解释每个步骤的重要性和目的,帮助读者理解背后的逻辑。无论你是初学者还是有一定基础的开发者,这篇文章都将为你提供有价值的见解和技能。
119 0
|
1月前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
16天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
24天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
76 7
|
1月前
|
数据可视化 算法 Python
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
本文介绍了如何利用Python脚本结合动态模态分解(DMD)技术,分析从OpenFOAM模拟中提取的二维切片数据,以深入理解流体动力学现象。通过PyVista库处理VTK格式的模拟数据,进行POD和DMD分析,揭示流场中的主要能量结构及动态特征。此方法为研究复杂流动系统提供了有力工具。
77 2
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
|
23天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
29 3
|
1月前
|
机器学习/深度学习 数据可视化 Python
Python实用记录(三):通过netron可视化模型
使用Netron工具在Python中可视化神经网络模型,包括安装Netron、创建文件和运行文件的步骤。
34 2
Python实用记录(三):通过netron可视化模型
|
24天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
40 2
下一篇
无影云桌面