Pytorch入门与实践——AI插画师:生成对抗网络数据集制作

简介: Pytorch入门与实践——AI插画师:生成对抗网络数据集制作

目录


摘要


1、用爬虫爬取二次元妹子的图片


2、获取图片中的头像


摘要

最近想搞一搞GAN,但是发现《Pytorch入门与实践——AI插画师:生成对抗网络》,但是发现数据集的链接失效了,所以自己制作一份。


代码来自https://www.zhihu.com/people/he-zhi-yuan-16,我做了一些修改。


1、用爬虫爬取二次元妹子的图片

数据从https://konachan.net/网站中下载的,是一个非常著名的动漫网站(不过我不知道)代码如下:


import requests
from bs4 import BeautifulSoup
import os
import traceback
def download(url, filename):
    if os.path.exists(filename):
        print('file exists!')
        return
    try:
        r = requests.get(url, stream=True, timeout=60)
        r.raise_for_status()
        with open(filename, 'wb') as f:
            for chunk in r.iter_content(chunk_size=1024):
                if chunk:  # filter out keep-alive new chunks
                    f.write(chunk)
                    f.flush()
        return filename
    except KeyboardInterrupt:
        if os.path.exists(filename):
            os.remove(filename)
        raise KeyboardInterrupt
    except Exception:
        traceback.print_exc()
        if os.path.exists(filename):
            os.remove(filename)
if os.path.exists('imgs') is False:
    os.makedirs('imgs')
start =1
end = 8000
for i in range(start, end + 1):
    url = 'https://konachan.net/post?page=%d&tags=' % i
    html = requests.get(url).text
    soup = BeautifulSoup(html, 'html.parser')
    for img in soup.find_all('img', class_="preview"):
        target_url =img['src']
        filename = os.path.join('imgs', target_url.split('/')[-1])
        download(target_url, filename)
    print('%d / %d' % (i, end))

运行代码后就能在imgs文件夹看到二次元妹子的照片,各种各样的,目不暇接、眼花缭乱。。。。。

20210311204701510.jpg

2、获取图片中的头像

截取头像和原文一样,直接使用github上一个基于opencv的工具,地址:https://github.com/nagadomi/lbpcascade_animeface,将lbpcascade_animeface.xml(准确率挺高的,不过有点猥琐,大家试一下就知道了。。。。。。)文件,放到根目录下。


然后运行下面的代码:

import cv2
import sys
import os.path
from glob import glob
def detect(filename, cascade_file="lbpcascade_animeface.xml"):
    if not os.path.isfile(cascade_file):
        raise RuntimeError("%s: not found" % cascade_file)
    cascade = cv2.CascadeClassifier(cascade_file)
    image = cv2.imread(filename)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    gray = cv2.equalizeHist(gray)
    faces = cascade.detectMultiScale(gray,
                                     # detector options
                                     scaleFactor=1.1,
                                     minNeighbors=5,
                                     minSize=(48, 48))
    for i, (x, y, w, h) in enumerate(faces):
        face = image[y: y + h, x:x + w, :]
        face = cv2.resize(face, (96, 96))
        save_filename = '%s-%d.jpg' % (os.path.basename(filename).split('.')[0], i)
        cv2.imwrite("faces/" + save_filename, face)
if __name__ == '__main__':
    if os.path.exists('faces') is False:
        os.makedirs('faces')
    file_list = glob('imgs/*.jpg')
    for filename in file_list:
        detect(filename)


目录
相关文章
|
26天前
|
人工智能 安全 算法
利用AI技术提升网络安全防御能力
【10月更文挑战第42天】随着人工智能技术的不断发展,其在网络安全领域的应用也日益广泛。本文将探讨如何利用AI技术提升网络安全防御能力,包括异常行为检测、恶意软件识别以及网络攻击预测等方面。通过实际案例和代码示例,我们将展示AI技术在网络安全防御中的潜力和优势。
|
28天前
|
人工智能 运维 物联网
AI在蜂窝网络中的应用前景
AI在蜂窝网络中的应用前景
48 3
|
15天前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
37 3
图卷积网络入门:数学基础与架构设计
|
5天前
|
Web App开发 网络协议 安全
网络编程懒人入门(十六):手把手教你使用网络编程抓包神器Wireshark
Wireshark是一款开源和跨平台的抓包工具。它通过调用操作系统底层的API,直接捕获网卡上的数据包,因此捕获的数据包详细、功能强大。但Wireshark本身稍显复杂,本文将以用抓包实例,手把手带你一步步用好Wireshark,并真正理解抓到的数据包的各项含义。
33 2
|
12天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
36 3
|
19天前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
24天前
|
人工智能 自然语言处理 机器人
手把手带你搭建一个语音对话机器人,5分钟定制个人AI小助手(新手入门篇)
本文介绍了如何从零开始搭建一个语音对话机器人,涵盖自动语音识别(ASR)、自然语言处理(NLP)和文本到语音合成(TTS)三大核心模块。通过使用开源工具如FunASR、LLaMA3-8B和ChatTTS,以及FastAPI和Gradio等技术,详细指导读者轻松实现个人AI小助手的构建,适合技术新手快速上手。
161 1
|
27天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
29天前
|
机器学习/深度学习 人工智能 安全
AI与网络安全:防御黑客的新武器
在数字化时代,网络安全面临巨大挑战。本文探讨了人工智能(AI)在网络安全中的应用,包括威胁识别、自动化防御、漏洞发现和预测分析,展示了AI如何提升防御效率和准确性,成为对抗网络威胁的强大工具。
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用