TF之TFOD-API:基于tensorflow框架利用TFOD-API脚本文件将YoloV3训练好的.ckpt模型文件转换为推理时采用的.pb文件

简介: TF之TFOD-API:基于tensorflow框架利用TFOD-API脚本文件将YoloV3训练好的.ckpt模型文件转换为推理时采用的.pb文件

导出前后文件结果

image.png


输出结果记录

Instructions for updating:

keep_dims is deprecated, use keepdims instead

W0929 20:40:36.003197  1396 tf_logging.py:125] From F:\File_Python\Python_example\models-master\research\object_detection\predictors\heads\box_head.py:93: calling reduce_mean (from tensorflow.python.ops.math_ops) with keep_dims is deprecated and will be removed in a future version.

Instructions for updating:

keep_dims is deprecated, use keepdims instead

WARNING:tensorflow:From F:\File_Python\Python_example\models-master\research\object_detection\exporter.py:280: get_or_create_global_step (from tensorflow.contrib.framework.python.ops.variables) is deprecated and will be removed in a future version.

Instructions for updating:

Please switch to tf.train.get_or_create_global_step

W0929 20:40:37.104074  1396 tf_logging.py:125] From F:\File_Python\Python_example\models-master\research\object_detection\exporter.py:280: get_or_create_global_step (from tensorflow.contrib.framework.python.ops.variables) is deprecated and will be removed in a future version.

Instructions for updating:

Please switch to tf.train.get_or_create_global_step

WARNING:tensorflow:From F:\File_Python\Python_example\models-master\research\object_detection\exporter.py:434: print_model_analysis (from tensorflow.contrib.tfprof.model_analyzer) is deprecated and will be removed after 2018-01-01.

Instructions for updating:

Use `tf.profiler.profile(graph, run_meta, op_log, cmd, options)`. Build `options` with `tf.profiler.ProfileOptionBuilder`. See README.md for details

W0929 20:40:37.111633  1396 tf_logging.py:125] From F:\File_Python\Python_example\models-master\research\object_detection\exporter.py:434: print_model_analysis (from tensorflow.contrib.tfprof.model_analyzer) is deprecated and will be removed after 2018-01-01.

Instructions for updating:

Use `tf.profiler.profile(graph, run_meta, op_log, cmd, options)`. Build `options` with `tf.profiler.ProfileOptionBuilder`. See README.md for details

568 ops no flops stats due to incomplete shapes.

Parsing Inputs...

Incomplete shape.

=========================Options=============================

-max_depth                  10000

-min_bytes                  0

-min_peak_bytes             0

-min_residual_bytes         0

-min_output_bytes           0

-min_micros                 0

-min_accelerator_micros     0

-min_cpu_micros             0

-min_params                 0

-min_float_ops              0

-min_occurrence             0

-step                       -1

-order_by                   name

-account_type_regexes       _trainable_variables

-start_name_regexes         .*

-trim_name_regexes          .*BatchNorm.*

-show_name_regexes          .*

-hide_name_regexes

-account_displayed_op_only  true

-select                     params

-output                     stdout:

==================Model Analysis Report======================

Incomplete shape.

Doc:

scope: The nodes in the model graph are organized by their names, which is hierarchical like filesystem.

param: Number of parameters (in the Variable).

Profile:

node name | # parameters

_TFProfRoot (--/59.45m params)

 Conv (--/5.01m params)

   Conv/biases (512, 512/512 params)

   Conv/weights (3x3x1088x512, 5.01m/5.01m params)

 FirstStageBoxPredictor (--/36.94k params)

   FirstStageBoxPredictor/BoxEncodingPredictor (--/24.62k params)

     FirstStageBoxPredictor/BoxEncodingPredictor/biases (48, 48/48 params)

     FirstStageBoxPredictor/BoxEncodingPredictor/weights (1x1x512x48, 24.58k/24.58k params)

   FirstStageBoxPredictor/ClassPredictor (--/12.31k params)

     FirstStageBoxPredictor/ClassPredictor/biases (24, 24/24 params)

     FirstStageBoxPredictor/ClassPredictor/weights (1x1x512x24, 12.29k/12.29k params)

 FirstStageFeatureExtractor (--/26.84m params)

   FirstStageFeatureExtractor/InceptionResnetV2 (--/26.84m params)

     FirstStageFeatureExtractor/InceptionResnetV2/Conv2d_1a_3x3 (--/864 params)

       FirstStageFeatureExtractor/InceptionResnetV2/Conv2d_1a_3x3/BatchNorm (--/0 params)

…………

           SecondStageFeatureExtractor/InceptionResnetV2/Repeat/block8_9/Conv2d_1x1/biases (2080, 2.08k/2.08k params)

           SecondStageFeatureExtractor/InceptionResnetV2/Repeat/block8_9/Conv2d_1x1/weights (1x1x448x2080, 931.84k/931.84k params)

======================End of Report==========================

568 ops no flops stats due to incomplete shapes.

Parsing Inputs...

Incomplete shape.

=========================Options=============================

-max_depth                  10000

-min_bytes                  0

-min_peak_bytes             0

-min_residual_bytes         0

-min_output_bytes           0

-min_micros                 0

-min_accelerator_micros     0

-min_cpu_micros             0

-min_params                 0

-min_float_ops              1

-min_occurrence             0

-step                       -1

-order_by                   float_ops

-account_type_regexes       .*

-start_name_regexes         .*

-trim_name_regexes          .*BatchNorm.*,.*Initializer.*,.*Regularizer.*,.*BiasAdd.*

-show_name_regexes          .*

-hide_name_regexes

-account_displayed_op_only  true

-select                     float_ops

-output                     stdout:

==================Model Analysis Report======================

Incomplete shape.

Doc:

scope: The nodes in the model graph are organized by their names, which is hierarchical like filesystem.

flops: Number of float operations. Note: Please read the implementation for the math behind it.

Profile:

node name | # float_ops

_TFProfRoot (--/3.42k flops)

 map_1/while/mul_3 (300/300 flops)

 map_1/while/mul_2 (300/300 flops)

 map_1/while/mul_1 (300/300 flops)

 map_1/while/mul (300/300 flops)

 map/while/ToNormalizedCoordinates/Scale/mul_3 (300/300 flops)

 map/while/ToNormalizedCoordinates/Scale/mul_2 (300/300 flops)

 map/while/ToNormalizedCoordinates/Scale/mul_1 (300/300 flops)

 map/while/ToNormalizedCoordinates/Scale/mul (300/300 flops)

 GridAnchorGenerator/mul (12/12 flops)

 GridAnchorGenerator/truediv (12/12 flops)

 GridAnchorGenerator/mul_2 (12/12 flops)

 GridAnchorGenerator/mul_1 (12/12 flops)

 FirstStageFeatureExtractor/InceptionResnetV2/InceptionResnetV2/Repeat_1/block17_10/Branch_1/Conv2d_0c_7x1/required_space_to_batch_paddings/add (2/2 flops)

 FirstStageFeatureExtractor/InceptionResnetV2/InceptionResnetV2/Repeat_1/block17_8/Conv2d_1x1/required_space_to_batch_paddings/add (2/2 flops)

 ……

 BatchMultiClassNonMaxSuppression/map/while/MultiClassNonMaxSuppression/SortByField/Equal (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/MultiClassNonMaxSuppression/SortByField_1/Equal (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/MultiClassNonMaxSuppression/add (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/MultiClassNonMaxSuppression/sub (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/Greater (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/Greater_1 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/Greater_2 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/Greater_3 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/Greater_4 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/Greater_5 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/Greater_6 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/sub (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/sub_1 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/sub_10 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/sub_11 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/sub_12 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/sub_13 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/sub_2 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/sub_3 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/sub_4 (1/1 flops)

 GridAnchorGenerator/add_3 (1/1 flops)

 GridAnchorGenerator/add_4 (1/1 flops)

 GridAnchorGenerator/assert_equal/Equal (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/Less (1/1 flops)

 Decode/transpose_1/sub (1/1 flops)

 Decode/transpose/sub (1/1 flops)

 GridAnchorGenerator/mul_7 (1/1 flops)

 GridAnchorGenerator/mul_8 (1/1 flops)

 Decode/get_center_coordinates_and_sizes/transpose/sub (1/1 flops)

 GridAnchorGenerator/zeros/Less (1/1 flops)

 Preprocessor/map/while/Less (1/1 flops)

 Preprocessor/map/while/Less_1 (1/1 flops)

 Preprocessor/map/while/ResizeToRange/Greater (1/1 flops)

 Preprocessor/map/while/ResizeToRange/Maximum (1/1 flops)

 Preprocessor/map/while/ResizeToRange/Minimum (1/1 flops)

 Preprocessor/map/while/ResizeToRange/mul (1/1 flops)

 Preprocessor/map/while/ResizeToRange/mul_1 (1/1 flops)

 Preprocessor/map/while/ResizeToRange/mul_2 (1/1 flops)

 Preprocessor/map/while/ResizeToRange/mul_3 (1/1 flops)

 Preprocessor/map/while/ResizeToRange/truediv (1/1 flops)

 Preprocessor/map/while/ResizeToRange/truediv_1 (1/1 flops)

 Preprocessor/map/while/add (1/1 flops)

 Preprocessor/map/while/add_1 (1/1 flops)

 SecondStagePostprocessor/BatchMultiClassNonMaxSuppression/map/while/Less (1/1 flops)

 SecondStagePostprocessor/BatchMultiClassNonMaxSuppression/map/while/Less_1 (1/1 flops)

 SecondStagePostprocessor/BatchMultiClassNonMaxSuppression/map/while/MultiClassNonMaxSuppression/ChangeCoordinateFrame/sub (1/1 flops)

 ……

 SecondStagePostprocessor/BatchMultiClassNonMaxSuppression/map/while/MultiClassNonMaxSuppression/sub_9 (1/1 flops)

 SecondStagePostprocessor/BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/Greater (1/1 flops)

 

……

SecondStagePostprocessor/BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/sub_9 (1/1 flops)

 SecondStagePostprocessor/BatchMultiClassNonMaxSuppression/map/while/add (1/1 flops)

 SecondStagePostprocessor/BatchMultiClassNonMaxSuppression/map/while/add_1 (1/1 flops)

 SecondStagePostprocessor/Decode/get_center_coordinates_and_sizes/transpose/sub (1/1 flops)

 SecondStagePostprocessor/Decode/transpose/sub (1/1 flops)

 SecondStagePostprocessor/Decode/transpose_1/sub (1/1 flops)

 map/while/Less (1/1 flops)

 map/while/Less_1 (1/1 flops)

 BatchMultiClassNonMaxSuppression/ones/Less (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/add_1 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/add (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/sub_9 (1/1 flops)

 map/while/ToNormalizedCoordinates/truediv (1/1 flops)

 map/while/ToNormalizedCoordinates/truediv_1 (1/1 flops)

 map/while/add (1/1 flops)

 map/while/add_1 (1/1 flops)

 map_1/while/Less (1/1 flops)

 map_1/while/Less_1 (1/1 flops)

 map_1/while/add (1/1 flops)

 map_1/while/add_1 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/sub_8 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/sub_7 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/sub_6 (1/1 flops)

 BatchMultiClassNonMaxSuppression/map/while/PadOrClipBoxList/sub_5 (1/1 flops)

 mul (1/1 flops)

======================End of Report==========================

2018-09-29 20:40:47.042684:


相关文章
|
10月前
|
API
用 Koa 框架实现一个简单的 RESTful API
用 Koa 框架实现一个简单的 RESTful API
139 26
|
7月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
|
10月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
853 5
|
10月前
|
缓存 API 数据库
Python哪个框架合适开发速卖通商品详情api?
在跨境电商平台速卖通的商品详情数据获取与整合中,Python 语言及其多种框架(如 Flask、Django、Tornado 和 FastAPI)提供了高效解决方案。Flask 简洁灵活,适合快速开发;Django 功能全面,适用于大型项目;Tornado 性能卓越,擅长处理高并发;FastAPI 结合类型提示和异步编程,开发体验优秀。选择合适的框架需综合考虑项目规模、性能要求和团队技术栈。
101 2
|
10月前
|
JSON JavaScript 中间件
Koa框架下的RESTful API设计与实现
在现代 Web 开发中,构建高效、可维护的 API 是至关重要的。Koa 是一个流行的 Node.js Web 应用框架,它具有简洁、灵活和强大的特性,非常适合用于设计和实现 RESTful API。
|
10月前
|
开发框架 Java 关系型数据库
Java哪个框架适合开发API接口?
在快速发展的软件开发领域,API接口连接了不同的系统和服务。Java作为成熟的编程语言,其生态系统中出现了许多API开发框架。Magic-API因其独特优势和强大功能,成为Java开发者优选的API开发框架。本文将从核心优势、实际应用价值及未来展望等方面,深入探讨Magic-API为何值得选择。
349 2
|
10月前
|
API PHP 数据库
PHP中哪个框架最适合做API?
在数字化时代,API作为软件应用间通信的桥梁至关重要。本文探讨了PHP中适合API开发的主流框架,包括Laravel、Symfony、Lumen、Slim、Yii和Phalcon,分析了它们的特点和优势,帮助开发者选择合适的框架,提高开发效率、保证接口稳定性和安全性。
349 3
|
10月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
369 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
10月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
507 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
10月前
|
JavaScript 中间件 API
Node.js进阶:Koa框架下的RESTful API设计与实现
【10月更文挑战第28天】本文介绍了如何在Koa框架下设计与实现RESTful API。首先概述了Koa框架的特点,接着讲解了RESTful API的设计原则,包括无状态和统一接口。最后,通过一个简单的博客系统示例,详细展示了如何使用Koa和koa-router实现常见的CRUD操作,包括获取、创建、更新和删除文章。
249 4

热门文章

最新文章