手写简单starter

简介: springboot的starter的了解的是学习springboot重要一环

1.先在pom下添加

<dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter</artifactId>
        </dependency>
        <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-autoconfigure</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-configuration-processor</artifactId>
<!--        <optional>true</optional>-->
    </dependency>

项目结构

image.png

2.创建配置获取的类

@ConfigurationProperties(prefix = "simplebean")//自动获取配置文件中前缀为prefix值的属性,把值传入对象参数
public class SimpleBean {
    private int id;
    private String name;
    public int getId() {
        return id;
    }
    public void setId(int id) {
        this.id = id;
    }
    public String getName() {
        return name;
    }
    @Override
    public String toString() {
        return "SimpleBean{" +
                "id=" + id +
                ", name='" + name + '\'' +
                '}';
    }
    public void setName(String name) {
        this.name = name;
    }
}

3.创建配置类

image.png

4.在resources下创建spring.factories

org.springframework.boot.autoconfigure.EnableAutoConfiguration=\
com.zsl.config.MyAutoConfiguration

//5.也可用热插拔强制加注解引入某个类

5.创建测试项目测试即可


源码


相关文章
|
机器学习/深度学习 算法 测试技术
处理不平衡数据的过采样技术对比总结
在不平衡数据上训练的分类算法往往导致预测质量差。模型严重偏向多数类,忽略了对许多用例至关重要的少数例子。这使得模型对于涉及罕见但高优先级事件的现实问题来说不切实际。
507 0
|
机器学习/深度学习 消息中间件 存储
【干货篇】bilibili:基于 Flink 的机器学习工作流平台在 b 站的应用
介绍 b 站的机器学习工作流平台 ultron 在 b 站多个机器学习场景上的应用。
【干货篇】bilibili:基于 Flink 的机器学习工作流平台在 b 站的应用
|
6月前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
357 67
|
5月前
|
缓存 负载均衡 网络协议
电商API接口性能优化技术揭秘:缓存策略与负载均衡详解
电商API接口性能优化是提升系统稳定性和用户体验的关键。本文聚焦缓存策略与负载均衡两大核心,详解其在电商业务中的实践。缓存策略涵盖本地、分布式及CDN缓存,通过全量或部分缓存设计和一致性维护,减少后端压力;负载均衡则利用反向代理、DNS轮询等技术,结合动态调整与冗余部署,提高吞吐量与可用性。文中引用大型及跨境电商平台案例,展示优化效果,强调持续监控与迭代的重要性,为电商企业提供了切实可行的性能优化路径。
|
6月前
|
消息中间件 缓存 NoSQL
基于Spring Data Redis与RabbitMQ实现字符串缓存和计数功能(数据同步)
总的来说,借助Spring Data Redis和RabbitMQ,我们可以轻松实现字符串缓存和计数的功能。而关键的部分不过是一些"厨房的套路",一旦你掌握了这些套路,那么你就像厨师一样可以准备出一道道饕餮美食了。通过这种方式促进数据处理效率无疑将大大提高我们的生产力。
229 32
|
6月前
|
存储 算法 架构师
腾讯问题:有40亿整数,如何 判断一个 int 是在其中,越快越好 ?
腾讯问题:有40亿整数,如何 判断一个 int 是在其中,越快越好 ?
腾讯问题:有40亿整数,如何 判断一个 int 是在其中,越快越好 ?
|
6月前
|
SQL 关系型数据库 MySQL
凌晨2点报警群炸了:一条sql 执行200秒!搞定之后,我总结了一个慢SQL查询、定位分析解决的完整套路
凌晨2点报警群炸了:一条sql 执行200秒!搞定之后,我总结了一个慢SQL查询、定位分析解决的完整套路
凌晨2点报警群炸了:一条sql 执行200秒!搞定之后,我总结了一个慢SQL查询、定位分析解决的完整套路
|
9月前
|
缓存 NoSQL 中间件
Redis,分布式缓存演化之路
本文介绍了基于Redis的分布式缓存演化,探讨了分布式锁和缓存一致性问题及其解决方案。首先分析了本地缓存和分布式缓存的区别与优劣,接着深入讲解了分布式远程缓存带来的并发、缓存失效(穿透、雪崩、击穿)等问题及应对策略。文章还详细描述了如何使用Redis实现分布式锁,确保高并发场景下的数据一致性和系统稳定性。最后,通过双写模式和失效模式讨论了缓存一致性问题,并提出了多种解决方案,如引入Canal中间件等。希望这些内容能为读者在设计分布式缓存系统时提供有价值的参考。感谢您的阅读!
335 6
Redis,分布式缓存演化之路
|
11月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
408 2
|
存储 分布式计算 前端开发
jvm性能调优实战 - 26一个每秒10万并发的系统如何频繁发生Young GC的
jvm性能调优实战 - 26一个每秒10万并发的系统如何频繁发生Young GC的
418 0