使用 Flink Hudi 构建流式数据湖

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 本文作者陈玉兆,介绍了 Flink Hudi 通过流计算对原有基于 mini-batch 的增量计算模型的不断优化演进。

本文介绍了 Flink Hudi 通过流计算对原有基于 mini-batch 的增量计算模型不断优化演进。用户可以通过 Flink SQL 将 CDC 数据实时写入 Hudi 存储,且在即将发布的 0.9 版本 Hudi 原生支持 CDC format。主要内容为:

  1. 背景
  2. 增量 ETL
  3. 演示

GitHub 地址
https://github.com/apache/flink
欢迎大家给 Flink 点赞送 star~

一、背景

近实时

从 2016 年开始,Apache Hudi 社区就开始通过 Hudi 的 UPSERT 能力探索近实时场景的使用案例 [1]。通过 MR/Spark 的批处理模型,用户可以实现小时级别的数据注入 HDFS/OSS。在纯实时场景,用户通过流计算引擎 Flink + KV/OLAP 存储的架构可以实现端到端的秒级 (5分钟级) 实时分析。然而在秒级 (5分钟级) 到小时级时的场景还存在大量的用例,我们称之为 NEAR-REAL-TIME (近实时)。

img

在实践中有大量的案例都属于近实时的范畴:

  1. 分钟级别的大屏;
  2. 各种 BI 分析 (OLAP);
  3. 机器学习分钟级别的特征提取。

增量计算

解决近实时的方案当前是比较开放的。

  • 流处理的时延低,但是 SQL 的 pattern 比较固定,查询端的能力(索引、ad hoc)欠缺;
  • 批处理的数仓能力丰富但是数据时延大。

于是 Hudi 社区提出基于 mini-batch 的增量计算模型:

增量数据集 => 增量计算结果 merge 已存结果 => 外存

这套模型通过湖存储的 snapshot 拉取增量的数据集 (两个 commits 之前的数据集),通过 Spark/Hive 等批处理框架计算增量的结果 (比如简单的 count) 再 merge 到已存结果中。

核心问题

增量模型需要解决的核心问题:

  1. UPSERT 能力:类似 KUDU 和 Hive ACID,Hudi 也提供了分钟级的更新能力;
  2. 增量消费:Hudi 通过湖存储的多 snapshots 提供增量拉取。

基于 mini-batch 的增量计算模型可以提升部分场景的时延、节省计算成本,但有一个很大的限制:对 SQL 的 pattern 有要求。因为计算走的是批,批计算本身不维护状态,这就要求计算的指标能够比较方便地 merge,简单的 count、sum 可以做,但是 avg、count distinct 这些还是需要拉取全量数据重算。

随着流计算和实时数仓的普及,Hudi 社区也在积极的拥抱变化,通过流计算对原有基于 mini-batch 的增量计算模型不断优化演进:在 0.7 版本引入了流式数据入湖,在 0.9 版本支持了原生的 CDC format。

二、增量 ETL

DB 数据入湖

随着 CDC 技术的成熟,debezium 这样的 CDC 工具越来越流行,Hudi 社区也先后集成了流写,流读的能力。用户可以通过 Flink SQL 将 CDC 数据实时写入 Hudi 存储:

img

  • 用户既可以通过 Flink CDC connector 直接将 DB 数据导入 Hudi;
  • 也可以先将 CDC 数据导入 Kafka,再通过 Kafka connector 导入 Hudi。

第二种方案的容错和扩展性会好一些。

数据湖 CDC

在即将发布的 0.9 版本,Hudi 原生支持 CDC format,一条 record 的所有变更记录都可以保存,基于此,Hudi 和流计算系统结合的更加完善,可以流式读取 CDC 数据 [2]:

img

源头 CDC 流的所有消息变更都在入湖之后保存下来,被用于流式消费。Flink 的有状态计算实时累加计算结果 (state),通过流式写 Hudi 将计算的变更同步到 Hudi 湖存储,之后继续对接 Flink 流式消费 Hudi 存储的 changelog, 实现下一层级的有状态计算。近实时端到端 ETL pipeline:

img

这套架构将端到端的 ETL 时延缩短到分钟级,并且每一层的存储格式都可以通过 compaction 压缩成列存(Parquet、ORC)以提供 OLAP 分析能力,由于数据湖的开放性,压缩后的格式可以对接各种查询引擎:Flink、Spark、Presto、Hive 等。

一张 Hudi 数据湖表具备两种形态:

  • 表形态:查询最新的快照结果,同时提供高效的列存格式
  • 流形态:流式消费变更,可以指定任意点位流读之后的 changelog

三、演示

我们通过一段 Demo 演示 Hudi 表的两种形态。

环境准备

  • Flink SQL Client
  • Hudi master 打包 hudi-flink-bundle jar
  • Flink 1.13.1

这里提前准备一段 debezium-json 格式的 CDC 数据

{"before":null,"after":{"id":101,"ts":1000,"name":"scooter","description":"Small 2-wheel scooter","weight":3.140000104904175},"source":{"version":"1.1.1.Final","connector":"mysql","name":"dbserver1","ts_ms":0,"snapshot":"true","db":"inventory","table":"products","server_id":0,"gtid":null,"file":"mysql-bin.000003","pos":154,"row":0,"thread":null,"query":null},"op":"c","ts_ms":1589355606100,"transaction":null}
{"before":null,"after":{"id":102,"ts":2000,"name":"car battery","description":"12V car battery","weight":8.100000381469727},"source":{"version":"1.1.1.Final","connector":"mysql","name":"dbserver1","ts_ms":0,"snapshot":"true","db":"inventory","table":"products","server_id":0,"gtid":null,"file":"mysql-bin.000003","pos":154,"row":0,"thread":null,"query":null},"op":"c","ts_ms":1589355606101,"transaction":null}
{"before":null,"after":{"id":103,"ts":3000,"name":"12-pack drill bits","description":"12-pack of drill bits with sizes ranging from #40 to #3","weight":0.800000011920929},"source":{"version":"1.1.1.Final","connector":"mysql","name":"dbserver1","ts_ms":0,"snapshot":"true","db":"inventory","table":"products","server_id":0,"gtid":null,"file":"mysql-bin.000003","pos":154,"row":0,"thread":null,"query":null},"op":"c","ts_ms":1589355606101,"transaction":null}
{"before":null,"after":{"id":104,"ts":4000,"name":"hammer","description":"12oz carpenter's hammer","weight":0.75},"source":{"version":"1.1.1.Final","connector":"mysql","name":"dbserver1","ts_ms":0,"snapshot":"true","db":"inventory","table":"products","server_id":0,"gtid":null,"file":"mysql-bin.000003","pos":154,"row":0,"thread":null,"query":null},"op":"c","ts_ms":1589355606101,"transaction":null}
{"before":null,"after":{"id":105,"ts":5000,"name":"hammer","description":"14oz carpenter's hammer","weight":0.875},"source":{"version":"1.1.1.Final","connector":"mysql","name":"dbserver1","ts_ms":0,"snapshot":"true","db":"inventory","table":"products","server_id":0,"gtid":null,"file":"mysql-bin.000003","pos":154,"row":0,"thread":null,"query":null},"op":"c","ts_ms":1589355606101,"transaction":null}
{"before":null,"after":{"id":106,"ts":6000,"name":"hammer","description":"16oz carpenter's hammer","weight":1},"source":{"version":"1.1.1.Final","connector":"mysql","name":"dbserver1","ts_ms":0,"snapshot":"true","db":"inventory","table":"products","server_id":0,"gtid":null,"file":"mysql-bin.000003","pos":154,"row":0,"thread":null,"query":null},"op":"c","ts_ms":1589355606101,"transaction":null}
{"before":null,"after":{"id":107,"ts":7000,"name":"rocks","description":"box of assorted rocks","weight":5.300000190734863},"source":{"version":"1.1.1.Final","connector":"mysql","name":"dbserver1","ts_ms":0,"snapshot":"true","db":"inventory","table":"products","server_id":0,"gtid":null,"file":"mysql-bin.000003","pos":154,"row":0,"thread":null,"query":null},"op":"c","ts_ms":1589355606101,"transaction":null}
{"before":null,"after":{"id":108,"ts":8000,"name":"jacket","description":"water resistent black wind breaker","weight":0.10000000149011612},"source":{"version":"1.1.1.Final","connector":"mysql","name":"dbserver1","ts_ms":0,"snapshot":"true","db":"inventory","table":"products","server_id":0,"gtid":null,"file":"mysql-bin.000003","pos":154,"row":0,"thread":null,"query":null},"op":"c","ts_ms":1589355606101,"transaction":null}
{"before":null,"after":{"id":109,"ts":9000,"name":"spare tire","description":"24 inch spare tire","weight":22.200000762939453},"source":{"version":"1.1.1.Final","connector":"mysql","name":"dbserver1","ts_ms":0,"snapshot":"true","db":"inventory","table":"products","server_id":0,"gtid":null,"file":"mysql-bin.000003","pos":154,"row":0,"thread":null,"query":null},"op":"c","ts_ms":1589355606101,"transaction":null}
{"before":{"id":106,"ts":6000,"name":"hammer","description":"16oz carpenter's hammer","weight":1},"after":{"id":106,"ts":10000,"name":"hammer","description":"18oz carpenter hammer","weight":1},"source":{"version":"1.1.1.Final","connector":"mysql","name":"dbserver1","ts_ms":1589361987000,"snapshot":"false","db":"inventory","table":"products","server_id":223344,"gtid":null,"file":"mysql-bin.000003","pos":362,"row":0,"thread":2,"query":null},"op":"u","ts_ms":1589361987936,"transaction":null}
{"before":{"id":107,"ts":7000,"name":"rocks","description":"box of assorted rocks","weight":5.300000190734863},"after":{"id":107,"ts":11000,"name":"rocks","description":"box of assorted rocks","weight":5.099999904632568},"source":{"version":"1.1.1.Final","connector":"mysql","name":"dbserver1","ts_ms":1589362099000,"snapshot":"false","db":"inventory","table":"products","server_id":223344,"gtid":null,"file":"mysql-bin.000003","pos":717,"row":0,"thread":2,"query":null},"op":"u","ts_ms":1589362099505,"transaction":null}
{"before":null,"after":{"id":110,"ts":12000,"name":"jacket","description":"water resistent white wind breaker","weight":0.20000000298023224},"source":{"version":"1.1.1.Final","connector":"mysql","name":"dbserver1","ts_ms":1589362210000,"snapshot":"false","db":"inventory","table":"products","server_id":223344,"gtid":null,"file":"mysql-bin.000003","pos":1068,"row":0,"thread":2,"query":null},"op":"c","ts_ms":1589362210230,"transaction":null}
{"before":null,"after":{"id":111,"ts":13000,"name":"scooter","description":"Big 2-wheel scooter ","weight":5.179999828338623},"source":{"version":"1.1.1.Final","connector":"mysql","name":"dbserver1","ts_ms":1589362243000,"snapshot":"false","db":"inventory","table":"products","server_id":223344,"gtid":null,"file":"mysql-bin.000003","pos":1394,"row":0,"thread":2,"query":null},"op":"c","ts_ms":1589362243428,"transaction":null}
{"before":{"id":110,"ts":12000,"name":"jacket","description":"water resistent white wind breaker","weight":0.20000000298023224},"after":{"id":110,"ts":14000,"name":"jacket","description":"new water resistent white wind breaker","weight":0.5},"source":{"version":"1.1.1.Final","connector":"mysql","name":"dbserver1","ts_ms":1589362293000,"snapshot":"false","db":"inventory","table":"products","server_id":223344,"gtid":null,"file":"mysql-bin.000003","pos":1707,"row":0,"thread":2,"query":null},"op":"u","ts_ms":1589362293539,"transaction":null}
{"before":{"id":111,"ts":13000,"name":"scooter","description":"Big 2-wheel scooter ","weight":5.179999828338623},"after":{"id":111,"ts":15000,"name":"scooter","description":"Big 2-wheel scooter ","weight":5.170000076293945},"source":{"version":"1.1.1.Final","connector":"mysql","name":"dbserver1","ts_ms":1589362330000,"snapshot":"false","db":"inventory","table":"products","server_id":223344,"gtid":null,"file":"mysql-bin.000003","pos":2090,"row":0,"thread":2,"query":null},"op":"u","ts_ms":1589362330904,"transaction":null}
{"before":{"id":111,"ts":16000,"name":"scooter","description":"Big 2-wheel scooter ","weight":5.170000076293945},"after":null,"source":{"version":"1.1.1.Final","connector":"mysql","name":"dbserver1","ts_ms":1589362344000,"snapshot":"false","db":"inventory","table":"products","server_id":223344,"gtid":null,"file":"mysql-bin.000003","pos":2443,"row":0,"thread":2,"query":null},"op":"d","ts_ms":1589362344455,"transaction":null}

通过 Flink SQL Client 创建表用来读取 CDC 数据文件

Flink SQL> CREATE TABLE debezium_source(
>   id INT NOT NULL,
>   ts BIGINT,
>   name STRING,
>   description STRING,
>   weight DOUBLE
> ) WITH (
>   'connector' = 'filesystem',
>   'path' = '/Users/chenyuzhao/workspace/hudi-demo/source.data',
>   'format' = 'debezium-json'
> );
[INFO] Execute statement succeed.

执行 SELECT 观察结果,可以看到一共有 20 条记录,中间有一些 UPDATE s,最后一条消息是 DELETE

Flink SQL> select * from debezium_source;
+----+-------------+----------------------+--------------------------------+--------------------------------+--------------------------------+
| op |          id |                   ts |                           name |                    description |                         weight |
+----+-------------+----------------------+--------------------------------+--------------------------------+--------------------------------+
| +I |         101 |                 1000 |                        scooter |          Small 2-wheel scooter |              3.140000104904175 |
| +I |         102 |                 2000 |                    car battery |                12V car battery |              8.100000381469727 |
| +I |         103 |                 3000 |             12-pack drill bits | 12-pack of drill bits with ... |              0.800000011920929 |
| +I |         104 |                 4000 |                         hammer |        12oz carpenter's hammer |                           0.75 |
| +I |         105 |                 5000 |                         hammer |        14oz carpenter's hammer |                          0.875 |
| +I |         106 |                 6000 |                         hammer |        16oz carpenter's hammer |                            1.0 |
| +I |         107 |                 7000 |                          rocks |          box of assorted rocks |              5.300000190734863 |
| +I |         108 |                 8000 |                         jacket | water resistent black wind ... |            0.10000000149011612 |
| +I |         109 |                 9000 |                     spare tire |             24 inch spare tire |             22.200000762939453 |
| -U |         106 |                 6000 |                         hammer |        16oz carpenter's hammer |                            1.0 |
| +U |         106 |                10000 |                         hammer |          18oz carpenter hammer |                            1.0 |
| -U |         107 |                 7000 |                          rocks |          box of assorted rocks |              5.300000190734863 |
| +U |         107 |                11000 |                          rocks |          box of assorted rocks |              5.099999904632568 |
| +I |         110 |                12000 |                         jacket | water resistent white wind ... |            0.20000000298023224 |
| +I |         111 |                13000 |                        scooter |           Big 2-wheel scooter  |              5.179999828338623 |
| -U |         110 |                12000 |                         jacket | water resistent white wind ... |            0.20000000298023224 |
| +U |         110 |                14000 |                         jacket | new water resistent white w... |                            0.5 |
| -U |         111 |                13000 |                        scooter |           Big 2-wheel scooter  |              5.179999828338623 |
| +U |         111 |                15000 |                        scooter |           Big 2-wheel scooter  |              5.170000076293945 |
| -D |         111 |                16000 |                        scooter |           Big 2-wheel scooter  |              5.170000076293945 |
+----+-------------+----------------------+--------------------------------+--------------------------------+--------------------------------+
Received a total of 20 rows

创建 Hudi 表,这里设置表的形态为 MERGE_ON_READ 并且打开 changelog 模式属性 changelog.enabled

Flink SQL> CREATE TABLE hoodie_table(
>   id INT NOT NULL PRIMARY KEY NOT ENFORCED,
>   ts BIGINT,
>   name STRING,
>   description STRING,
>   weight DOUBLE
> ) WITH (
>   'connector' = 'hudi',
>   'path' = '/Users/chenyuzhao/workspace/hudi-demo/t1',
>   'table.type' = 'MERGE_ON_READ',
>   'changelog.enabled' = 'true',
>   'compaction.async.enabled' = 'false'
> );
[INFO] Execute statement succeed.

查询

通过 INSERT 语句将数据导入 Hudi,开启流读模式,并执行查询观察结果

Flink SQL> select * from hoodie_table/*+ OPTIONS('read.streaming.enabled'='true')*/;
+----+-------------+----------------------+--------------------------------+--------------------------------+--------------------------------+
| op |          id |                   ts |                           name |                    description |                         weight |
+----+-------------+----------------------+--------------------------------+--------------------------------+--------------------------------+
| +I |         101 |                 1000 |                        scooter |          Small 2-wheel scooter |              3.140000104904175 |
| +I |         102 |                 2000 |                    car battery |                12V car battery |              8.100000381469727 |
| +I |         103 |                 3000 |             12-pack drill bits | 12-pack of drill bits with ... |              0.800000011920929 |
| +I |         104 |                 4000 |                         hammer |        12oz carpenter's hammer |                           0.75 |
| +I |         105 |                 5000 |                         hammer |        14oz carpenter's hammer |                          0.875 |
| +I |         106 |                 6000 |                         hammer |        16oz carpenter's hammer |                            1.0 |
| +I |         107 |                 7000 |                          rocks |          box of assorted rocks |              5.300000190734863 |
| +I |         108 |                 8000 |                         jacket | water resistent black wind ... |            0.10000000149011612 |
| +I |         109 |                 9000 |                     spare tire |             24 inch spare tire |             22.200000762939453 |
| -U |         106 |                 6000 |                         hammer |        16oz carpenter's hammer |                            1.0 |
| +U |         106 |                10000 |                         hammer |          18oz carpenter hammer |                            1.0 |
| -U |         107 |                 7000 |                          rocks |          box of assorted rocks |              5.300000190734863 |
| +U |         107 |                11000 |                          rocks |          box of assorted rocks |              5.099999904632568 |
| +I |         110 |                12000 |                         jacket | water resistent white wind ... |            0.20000000298023224 |
| +I |         111 |                13000 |                        scooter |           Big 2-wheel scooter  |              5.179999828338623 |
| -U |         110 |                12000 |                         jacket | water resistent white wind ... |            0.20000000298023224 |
| +U |         110 |                14000 |                         jacket | new water resistent white w... |                            0.5 |
| -U |         111 |                13000 |                        scooter |           Big 2-wheel scooter  |              5.179999828338623 |
| +U |         111 |                15000 |                        scooter |           Big 2-wheel scooter  |              5.170000076293945 |
| -D |         111 |                16000 |                        scooter |           Big 2-wheel scooter  |              5.170000076293945 |

可以看到 Hudi 保留了每行的变更记录,包括 change log 的 operation 类型,这里我们打开 TABLE HINTS 功能,方便动态设置表参数。

继续使用 batch 读模式,执行查询观察输出结果,可以看到中间的变更被合并。

Flink SQL> select * from hoodie_table;
2021-08-20 20:51:25,052 INFO  org.apache.hadoop.conf.Configuration.deprecation             [] - mapred.job.map.memory.mb is deprecated. Instead, use mapreduce.map.memory.mb
+----+-------------+----------------------+--------------------------------+--------------------------------+--------------------------------+
| op |          id |                   ts |                           name |                    description |                         weight |
+----+-------------+----------------------+--------------------------------+--------------------------------+--------------------------------+
| +U |         110 |                14000 |                         jacket | new water resistent white w... |                            0.5 |
| +I |         101 |                 1000 |                        scooter |          Small 2-wheel scooter |              3.140000104904175 |
| +I |         102 |                 2000 |                    car battery |                12V car battery |              8.100000381469727 |
| +I |         103 |                 3000 |             12-pack drill bits | 12-pack of drill bits with ... |              0.800000011920929 |
| +I |         104 |                 4000 |                         hammer |        12oz carpenter's hammer |                           0.75 |
| +I |         105 |                 5000 |                         hammer |        14oz carpenter's hammer |                          0.875 |
| +U |         106 |                10000 |                         hammer |          18oz carpenter hammer |                            1.0 |
| +U |         107 |                11000 |                          rocks |          box of assorted rocks |              5.099999904632568 |
| +I |         108 |                 8000 |                         jacket | water resistent black wind ... |            0.10000000149011612 |
| +I |         109 |                 9000 |                     spare tire |             24 inch spare tire |             22.200000762939453 |
+----+-------------+----------------------+--------------------------------+--------------------------------+--------------------------------+
Received a total of 10 rows

聚合

Bounded Source 读模式下计算 count(*)

Flink SQL> select count (*) from hoodie_table;
+----+----------------------+
| op |               EXPR$0 |
+----+----------------------+
| +I |                    1 |
| -U |                    1 |
| +U |                    2 |
| -U |                    2 |
| +U |                    3 |
| -U |                    3 |
| +U |                    4 |
| -U |                    4 |
| +U |                    5 |
| -U |                    5 |
| +U |                    6 |
| -U |                    6 |
| +U |                    7 |
| -U |                    7 |
| +U |                    8 |
| -U |                    8 |
| +U |                    9 |
| -U |                    9 |
| +U |                   10 |
+----+----------------------+
Received a total of 19 rows

Streaming 读模式下计算 count(*)

Flink SQL> select count (*) from hoodie_table/*+OPTIONS('read.streaming.enabled'='true')*/;
+----+----------------------+
| op |               EXPR$0 |
+----+----------------------+
| +I |                    1 |
| -U |                    1 |
| +U |                    2 |
| -U |                    2 |
| +U |                    3 |
| -U |                    3 |
| +U |                    4 |
| -U |                    4 |
| +U |                    5 |
| -U |                    5 |
| +U |                    6 |
| -U |                    6 |
| +U |                    7 |
| -U |                    7 |
| +U |                    8 |
| -U |                    8 |
| +U |                    9 |
| -U |                    9 |
| +U |                    8 |
| -U |                    8 |
| +U |                    9 |
| -U |                    9 |
| +U |                    8 |
| -U |                    8 |
| +U |                    9 |
| -U |                    9 |
| +U |                   10 |
| -U |                   10 |
| +U |                   11 |
| -U |                   11 |
| +U |                   10 |
| -U |                   10 |
| +U |                   11 |
| -U |                   11 |
| +U |                   10 |
| -U |                   10 |
| +U |                   11 |
| -U |                   11 |
| +U |                   10 |

可以看到 batch 和 streaming 模式下的计算结果是一致的。

当前的数据湖 CDC format 还处在快速迭代期,社区也在积极推动生产场景,对 Hudi 场景和案例感兴趣的同学可以扫码加群。

img

Reference

[1] https://www.oreilly.com/content/ubers-case-for-incremental-processing-on-hadoop/

[2] https://hudi.apache.org/blog/2021/07/21/streaming-data-lake-platform


第三届 Apache Flink 极客挑战赛报名开始!
30 万奖金等你来!

伴随着海量数据的冲击,数据处理分析能力在业务中的价值与日俱增,各行各业对于数据处理时效性的探索也在不断深入,作为主打实时计算的计算引擎 - Apache Flink 应运而生。

为给行业带来更多实时计算赋能实践的思路,鼓励广大热爱技术的开发者加深对 Flink 的掌握,Apache Flink 社区联手阿里云、英特尔、阿里巴巴人工智能治理与可持续发展实验室 (AAIG)、Occlum 联合举办 "第三届 Apache Flink 极客挑战赛暨 AAIG CUP" 活动,即日起正式启动。

👉 点击了解更多赛事信息 👈

img


更多 Flink 相关技术问题,可扫码加入社区钉钉交流群
第一时间获取最新技术文章和社区动态,请关注公众号~

image.png

活动推荐

阿里云基于 Apache Flink 构建的企业级产品-实时计算Flink版现开启活动:
99 元试用 实时计算Flink版(包年包月、10CU)即有机会获得 Flink 独家定制T恤;另包 3 个月及以上还有 85 折优惠!
了解活动详情:https://www.aliyun.com/product/bigdata/sc

image.png

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
SQL 流计算 关系型数据库
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。
474 5
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
|
6月前
|
SQL 关系型数据库 MySQL
如何在Dataphin中构建Flink+Paimon流式湖仓方案
当前大数据处理工业界非常重要的一个大趋势是一体化,尤其是湖仓一体架构。与过去分散的数据仓库和数据湖不同,湖仓一体架构通过将数据存储和处理融为一体,不仅提升了数据访问速度和处理效率,还简化了数据管理流程,降低了资源成本。企业可以更轻松地实现数据治理和分析,从而快速决策。paimon是国内开源的,也是最年轻的成员。 本文主要演示如何在 Dataphin 产品中构建 Flink+Paimon 的流式湖仓方案。
7904 10
如何在Dataphin中构建Flink+Paimon流式湖仓方案
|
6月前
|
关系型数据库 API Apache
Flink CDC:基于 Apache Flink 的流式数据集成框架
本文整理自阿里云 Flink SQL 团队研发工程师于喜千(yux)在 SECon 全球软件工程技术大会中数据集成专场沙龙的分享。
18482 11
Flink CDC:基于 Apache Flink 的流式数据集成框架
|
5月前
|
SQL 监控 大数据
Serverless 应用的监控与调试问题之Flink流式数仓对于工商银行的数据链路要如何简化
Serverless 应用的监控与调试问题之Flink流式数仓对于工商银行的数据链路要如何简化
|
6月前
|
存储 JSON Kubernetes
实时计算 Flink版操作报错合集之 写入hudi时报错,该如何排查
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
6月前
|
Java 关系型数据库 MySQL
实时计算 Flink版操作报错合集之同步tidb到hudi报错,一般是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
6月前
|
分布式计算 数据处理 流计算
实时计算 Flink版产品使用问题之使用Spark ThriftServer查询同步到Hudi的数据时,如何实时查看数据变化
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
7月前
|
SQL JSON 数据库
实时计算 Flink版操作报错合集之写入Hudi时,遇到从 COW(Copy-On-Write)表类型转换为 MOR(Merge-On-Read)表类型时报字段错误,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
115 2
|
8月前
|
存储 SQL 分布式计算
基于Apache Hudi + MinIO 构建流式数据湖
基于Apache Hudi + MinIO 构建流式数据湖
284 1
|
7天前
|
存储 SQL 大数据
从数据存储到分析:构建高效开源数据湖仓解决方案
今年开源大数据迈向湖仓一体(Lake House)时代,重点介绍Open Lake解决方案。该方案基于云原生架构,兼容开源生态,提供开箱即用的数据湖仓产品。其核心优势在于统一数据管理和存储,支持实时与批处理分析,打破多计算产品的数据壁垒。通过阿里云的Data Lake Formation和Apache Paimon等技术,用户可高效搭建、管理并分析大规模数据,实现BI和AI融合,满足多样化数据分析需求。

相关产品

  • 实时计算 Flink版