HaaS AI之手写数字识别快速实践,在VSCode中搭建TensorFlow 2.0简单神经网络

简介: 本文将介绍如何在VSCode里面搭建TensorFlow的开发环境,并跑一个简单的神经网络来进行手写数据的识别。

1、Conda环境安装

参考HaaS AI之VSCode中搭建Python虚拟环境


2、创建TensorFlow Python虚拟环境

conda维护到TensorFlow2.0版本,基于Python3.7版本,因此线创建一个TensorFlow的Python虚拟环境,命名为tf2。

conda create --name tf2 python=3.7

2.1、激活环境

(tf2)$conda activate tf2

2.2、安装TensorFlow2.0

(tf2)$conda install tensorflow

2.3、安装Matplotlib

matplotlib,风格类似 Matlab 的基于 Python 的图表绘图系统。


matplotlib 是 Python最著名的绘图库,它提供了一整套和 matlab 相似的命 API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入 GUI 应用程序中,在模型训练中常常用来绘制图形。


(tf2)$conda install matplotlib

3、TensorFlow之初体验

TensorFlow是Google开源的深度学习框架,是一个端到端平台,无论您是专家还是初学者,它都可以让您轻松地构建和部署机器学习模型。

image.png

3.1、简单手写数字识别网络

在VSCode中训练一个简单的手写数字识别网络模型:


1. 加载TensorFlow

In [1]:

#Mac OS KMP设置

import os

os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

# 安装 TensorFlow

import tensorflow as tf

2. 载入并准备好 MNIST 数据集。将样本从整数转换为浮点数:

In [2]:

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

3. 将模型的各层堆叠起来,以搭建 tf.keras.Sequential 模型。为训练选择优化器和损失函数:

In [3]:

model = tf.keras.models.Sequential([

 tf.keras.layers.Flatten(input_shape=(28, 28)),

 tf.keras.layers.Dense(128, activation='relu'),

 tf.keras.layers.Dropout(0.2),

 tf.keras.layers.Dense(10, activation='softmax')

])

model.compile(optimizer='adam',

             loss='sparse_categorical_crossentropy',

             metrics=['accuracy'])

4. 训练并验证模型:

In [4]:

model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test,  y_test, verbose=2)

# 输出结果

Out[4]:

Train on 60000 samples

Epoch 1/5

60000/60000 [==============================] - 9s 154us/sample - loss: 0.3008 - accuracy: 0.9120

Epoch 2/5

60000/60000 [==============================] - 9s 147us/sample - loss: 0.1444 - accuracy: 0.9579

Epoch 3/5

60000/60000 [==============================] - 10s 170us/sample - loss: 0.1073 - accuracy: 0.9676

Epoch 4/5

60000/60000 [==============================] - 10s 174us/sample - loss: 0.0890 - accuracy: 0.9726

Epoch 5/5

60000/60000 [==============================] - 11s 180us/sample - loss: 0.0765 - accuracy: 0.9764

10000/1 - 1s - loss: 0.0379 - accuracy: 0.9777

[0.0705649911917746, 0.9777]

3.2、模型保存

model.save('tf_mnist_simple_net.h5')

3.3、模型预测

3.3.1、显示待测图片

从测试集中选择索引号为image_index的图片进行测试。


5. 模型预测

# 定义plot_image函数,查看指定个数数据图像

import matplotlib.pyplot as plt #导入matplotlib.pyplot

def plot_image(image):                  #输入参数为image

   pic=plt.gcf()                       #获取当前图像

   pic.set_size_inches(2,2)            ##设置图片大

 

   plt.imshow(image, cmap='binary')    #使用plt.imshow显示图片

   plt.show()                          #设置图片大

 

# 测试集中图片索引 0~10000

In [1]:

image_index=23

# 显示待预测值

plot_image(x_test[image_index])

image.png

3.3.2、打印测试结果

pred = model.predict_classes(x_test)

#打印预测结果

print(pred)

print("测试数字结果:")

print(pred[image_index])

# 输出结果

Out [1]:

[7 2 1 ... 4 5 6]

测试数字结果:

5

为了节省训练时间,把eporch迭代次数改为1,创建一个Jupyter notebook执行1次迭代训练上述模型:


https://v.youku.com/v_show/id_XNTA5Mzk2NzU2NA==.html


注意:


在创建*.ipynb和*.py文件的名称不能是tensorflow.ipynb/tensorflow.py,否则会出现各种库找不到的情形。


3.3.3、测试代码

将以上代码合在同一个文件中(去掉输出结果部分)就可以进行测试了。


4、FQA

Q1: Mac OS上在执行模型训练时出现错误

OMP: Error #15: Initializing libiomp5.dylib, but found libiomp5.dylib already initialized.


OMP: Hint This means that multiple copies of the OpenMP runtime have been linked into the program. That is dangerous, since it can degrade performance or cause incorrect results. The best thing to do is to ensure that only a single OpenMP runtime is linked into the process, e.g. by avoiding static linking of the OpenMP runtime in any library. As an unsafe, unsupported, undocumented workaround you can set the environment variable KMP_DUPLICATE_LIB_OK=TRUE to allow the program to continue to execute, but that may cause crashes or silently produce incorrect results. For more information, please see http://www.intel.com/software/products/support/.


Abort trap: 6


A1:

大概意思就是初始化libiomp5.dylib时发现已经初始化过了。


经过Google发现这似乎是一个Mac OS 才存在的特殊问题,在代码头部加入:


import os

os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"


相关文章
|
人工智能 C++ iOS开发
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
20148 71
|
9月前
|
人工智能 开发工具 C++
利用通义灵码AI在VS Code中快速开发扫雷游戏:Qwen2.5-Max模型的应用实例
本文介绍了如何利用阿里云通义灵码AI程序员的Qwen2.5-Max模型,在VS Code中一键生成扫雷小游戏。通过安装通义灵码插件并配置模型,输入指令即可自动生成包含游戏逻辑与UI设计的Python代码。生成的游戏支持难度选择,运行稳定无Bug。实践表明,AI工具显著提升开发效率,但人机协作仍是未来趋势。建议开发者积极拥抱新技术,同时不断提升自身技能以适应行业发展需求。
22598 18
利用通义灵码AI在VS Code中快速开发扫雷游戏:Qwen2.5-Max模型的应用实例
|
10月前
|
人工智能 自然语言处理 API
Cline:29.7K Star!一文详解VSCode最强开源AI编程搭子:一键生成代码+自动跑终端+操控浏览器...
Cline 是一款集成于 VSCode 的 AI 编程助手,支持多语言模型,实时检查语法错误,帮助开发者提高编程效率。通过智能化手段,Cline 可以生成代码、执行终端命令、调试 Web 应用,并扩展更多功能。
3417 73
|
9月前
|
人工智能 前端开发 JavaScript
AI程序员:通义灵码 2.0应用VScode前端开发深度体验
AI程序员:通义灵码 2.0应用VScode前端开发深度体验,在软件开发领域,人工智能技术的融入正深刻改变着程序员的工作方式。通义灵码 2.0 作为一款先进的 AI 编程助手,与广受欢迎的代码编辑器 Visual Studio Code(VScode)相结合,为前端开发带来了全新的可能性。本文将详细分享通义灵码 2.0 在 VScode 前端开发环境中的深度使用体验。
1443 2
AI程序员:通义灵码 2.0应用VScode前端开发深度体验
|
10月前
|
人工智能 小程序 程序员
【视频测评 DEMO 参考】VSCode 神级 AI 插件通义灵码:完全免费+实战教程+微信贪吃蛇小程序
VSCode 神级 AI 插件通义灵码:完全免费+实战教程+微信贪吃蛇小程序
724 8
|
10月前
|
人工智能 自然语言处理 前端开发
VSCode AI提效工具,通义灵码前端开发体验
通义灵码2.0是一款强大的VS Code插件,安装简便,图标易记。其亮点包括接入deepseek-v3/r1模型,支持智能问答、AI编程、代码优化及贴图提问;多语言和编辑器支持;个性化使用满足不同需求。个人版完全免费,节省12%开发时间。对比1.0版本,2.0在功能实现上更加完善,尤其在前端项目中表现出色,根据需求描述生成完整项目结构和详细代码,极大提升开发效率。
709 0
|
人工智能 C++ 开发者
verilog vscode 与AI 插件
【9月更文挑战第11天】在Verilog开发中,使用Visual Studio Code(VS Code)结合AI插件能显著提升效率。VS Code提供强大的编辑功能,如语法高亮、自动补全和代码格式化;便捷的调试功能,支持多种调试器;以及丰富的插件生态。AI插件则可自动生成代码、优化现有代码、检测并修复错误,还能自动生成文档。常用插件包括Verilog AI Assistant和Verilog Language Server,可根据需求选择合适的工具组合,提高开发效率和代码质量。
1149 2
|
自然语言处理 C# 开发者
Uno Platform多语言开发秘籍大公开:轻松驾驭全球用户,一键切换语言,让你的应用成为跨文化交流的桥梁!
【8月更文挑战第31天】Uno Platform 是一个强大的开源框架,允许使用 C# 和 XAML 构建跨平台的原生移动、Web 和桌面应用程序。本文详细介绍如何通过 Uno Platform 创建多语言应用,包括准备工作、设置多语言资源、XAML 中引用资源、C# 中加载资源以及处理语言更改。通过简单的步骤和示例代码,帮助开发者轻松实现应用的国际化。
208 1
|
TensorFlow 算法框架/工具 Python
【Mac 系统】解决VSCode用Conda成功安装TensorFlow但程序报错显示红色波浪线Unable to import ‘tensorflow‘ pylint(import-error)
本文解决在Mac系统上使用VSCode时遇到的TensorFlow无法导入问题,原因是Python解析器未正确设置为Conda环境下的版本。通过在VSCode左下角选择正确的Python解析器,即可解决import TensorFlow时报错和显示红色波浪线的问题。
723 9
|
机器学习/深度学习 人工智能 TensorFlow
🔥零基础逆袭!Python数据分析+机器学习:TensorFlow带你秒变AI大师
【7月更文挑战第29天】在这个数据驱动的时代,掌握Python与机器学习技能是进入AI领域的关键。即使从零开始,也能通过TensorFlow成为AI专家。
215 8