Golang 单元测试:有哪些误区和实践?

简介: 单元测试作为开发的有力武器,应该在软件开发的各个流程中发挥它的价值。原始的开发模式(开发完毕,交给测试团队进行端到端测试)的流程,应该逐步向 devops 的方向转变。本文是一个转型的具体实践过程,以一个实际的业务应用项目为例,介绍了在展开单测实践过程中遇到的一些常见问题的思考,并着重介绍了几种 mock 方法,对于一些相对复杂依赖项较多的业务也可以作为借鉴。

1.jpg

作者 | 石窗
来源 | 阿里技术公众号

背景

测试是保证代码质量的有效手段,而单元测试是程序模块儿的最小化验证。单元测试的重要性是不言而喻的。相对手工测试,单元测试具有自动化执行、可自动回归,效率较高的特点。对于问题的发现效率,单测的也相对较高。在开发阶段编写单测 case ,daily push daily test,并通过单测的成功率、覆盖率来衡量代码的质量,能有效保证项目的整体质量。

2.jpg

单测准则

什么是好的单测?阿里巴巴的《Java 开发手册》(点击下载)中描述了好的单测的特征:

  • A(Automatic,自动化):单元测试应该是全自动执行的,并且非交互式的。
  • I:(Independent,独立性):为了保证单元测试稳定可靠且便于维护,单元测试用例之间决不能互相调用,也不能依赖执行的先后次序。
  • R:(Repeatable,可重复):单元测试通常会被放到持续集成中,每次有代码check in时单元测试都会被执行。如果单测对外部环境(网络、服务、中间件等)有依赖,容易导致持续集成机制的不可用。

单测应该是可重复执行的,对外部的依赖、环境的变化要通过 mock 或其他手段屏蔽掉。

在 On the architecture for unit testing[1]中对好的单测有以下描述:

  • 简短,只有一个测试目的
  • 简单,数据构造、清理都很简单
  • 快速,执行函数秒级执行
  • 标准,遵守严格的约定(准备测试上下文,执行关键操作,验证结果)

单测的误区

  • 没有断言。没有断言的单测是没有灵魂的。如果只是 print 出结果,单测是没有意义的。
  • 不接入持续集成。单测不应该是本地的 run once ,而应该接入到研发的整个流程中,合并代码,发布上线都应该触发单测执行,并且可以重复执行。
  • 粒度过大。单测粒度应该尽量小,不应该包含过多计算逻辑,尽量只有输入,输出和断言。

很多人不愿意写单测,是因为项目依赖很多,各个函数之间各种调用,不知道如何在一个隔离的测试环境下进行测试。

在实践中我们调研了几种隔离(mock)的手段。下面进行逐一介绍。

单测实践

本次实践的工程项目是一个 http(基于 gin 的http 框架) 的服务。以入口的 controller 层的函数为被测函数,介绍下对它的单测过程。下面的函数的作用是根据工号输出该用户下的代码仓库的 CodeReview 数据。

可以看到这个函数作为入口层还是比较简单的,只是做了一个参数校验后调用下游并将结果透出。

func ListRepoCrAggregateMetrics(c *gin.Context) {
    workNo := c.Query("work_no")
    if workNo == "" {
        c.JSON(http.StatusOK, errors.BuildRsp(errors.ErrorWarpper(errors.ErrParamError.ErrorCode, "work no miss"), nil))
        return
    }
    crCtx := code_review.NewCrCtx(c)
    rsp, err := crCtx.ListRepoCrAggregateMetrics(workNo)
    if err != nil {
        c.JSON(http.StatusOK, errors.BuildRsp(errors.ErrorWarpper(errors.ErrDbQueryError.ErrorCode, err.Error()), rsp))
        return
    }
    c.JSON(http.StatusOK, errors.BuildRsp(errors.ErrSuccess, rsp))
}
AI 代码解读

它的结果大致如下:

{
  "data": {
    "total": 10,
    "code_review": [
      {
        "repo": {
          "project_id": 1,
          "repo_url": "test"
        },
        "metrics": {
          "code_review_rate": 0.0977918,
          "thousand_comment_count": 0,
          "self_submit_code_review_rate": 0,
          "average_merge_cost": 30462.584,
          "average_accept_cost": 30388.75
        }
      }
    ]
  },
  "errorCode": 0,
  "errorMsg": "成功"
}
AI 代码解读

针对这个函数测试,我们预期覆盖以下场景:

  • workNo 为空时报错。
  • workNo 不为空时范围 ,下游调用成功,repos cr 聚合数据。
  • workNo 不为空,下游失败,返回报错信息。

方案一:不 mock 下游, mock 依赖存储 (不建议)

这种方式是通过配置文件,将依赖的存储都连接到本地(比如 sqlite , redis)。这种方式下游没有 mock 而是会继续调用。

var db *gorm.DB
func getMetricsRepo() *model.MetricsRepo {
    repo := model.MetricsRepo{
        ProjectID:     2,
        RepoPath:      "/",
        FileCount:     5,
        CodeLineCount: 76,
        OwnerWorkNo:   "999999",
    }
    return &repo
}
func getTeam() *model.Teams {
    team := model.Teams{
        WorkNo: "999999",
    }
    return &team
}
func init() {
    db, err := gorm.Open("sqlite3", "test.db")
    if err != nil {
        os.Exit(-1)
    }
    db.Debug()
    db.DropTableIfExists(model.MetricsRepo{})
    db.DropTableIfExists(model.Teams{})
    db.CreateTable(model.MetricsRepo{})
    db.CreateTable(model.Teams{})
    db.FirstOrCreate(getMetricsRepo())
    db.FirstOrCreate(getTeam())
}
type RepoMetrics struct {
    CodeReviewRate           float32 `json:"code_review_rate"`            
    ThousandCommentCount     uint    `json:"thousand_comment_count"`       
    SelfSubmitCodeReviewRate float32 `json:"self_submit_code_review_rate"` 
}
type RepoCodeReview struct {
    Repo        repo.Repo   `json:"repo"`
    RepoMetrics RepoMetrics `json:"metrics"`
}
type RepoCrMetricsRsp struct {
    Total          int               `json:"total"`
    RepoCodeReview []*RepoCodeReview `json:"code_review"`
}
func TestListRepoCrAggregateMetrics(t *testing.T) {
    w := httptest.NewRecorder()
    _, engine := gin.CreateTestContext(w)
    engine.GET("/api/test/code_review/repo", ListRepoCrAggregateMetrics)
    req, _ := http.NewRequest("GET", "/api/test/code_review/repo?work_no=999999", nil)
    engine.ServeHTTP(w, req)
    assert.Equal(t, w.Code, 200)
    var v map[string]RepoCrMetricsRsp
    json.Unmarshal(w.Body.Bytes(), &v)
    assert.EqualValues(t, 1, v["data"].Total)
    assert.EqualValues(t, 2, v["data"].RepoCodeReview[0].Repo.ProjectID)
    assert.EqualValues(t, 0, v["data"].RepoCodeReview[0].RepoMetrics.CodeReviewRate)
}
AI 代码解读

上面的代码,我们没有对被测代码做改动。但是在运行 go test 进行测试时,需要指定配置到测试配置。被测项目是通过环境变量设置的。

RDSC_CONF=$sourcepath/test/data/config.yml go test -v -cover=true -coverprofile=$sourcepath/cover/cover.cover ./...
AI 代码解读
  • 初始化测试环境,清空DB数据,写入被测数据。
  • 执行测试方法。
  • 断言测试结果。

方案二:下游通过 interface 被 mock(推荐)

gomock[2] 是 Golang 官方提供的 Go 语言 mock 框架。它能够很好的和 Go testing 模块儿结合,也能用于其他的测试环境中。Gomock 包括依赖库 gomock 和接口生成工具 mockgen 两部分,gomock 用于完成桩对象的管理, mockgen 用于生成对应的 mock 文件。

type Foo interface {
  Bar(x int) int
}
func SUT(f Foo) {
 // ...
}
ctrl := gomock.NewController(t)
  // Assert that Bar() is invoked.
  defer ctrl.Finish()
  //mockgen -source=foo.g
  m := NewMockFoo(ctrl)
  // Asserts that the first and only call to Bar() is passed 99.
  // Anything else will fail.
  m.
    EXPECT().
    Bar(gomock.Eq(99)).
    Return(101)
SUT(m)
AI 代码解读

上面的例子,接口 Foo 被 mock。回到我们的项目,在我们上面的被测代码中是通过内部声明对象进行调用的。使用 gomock 需要修改代码,把依赖通过参数暴露出来,然后初始化时。下面是修改后的被测函数:

type RepoCrCRController struct {
    c     *gin.Context
    crCtx code_review.CrCtxInterface
}
func NewRepoCrCRController(ctx *gin.Context, cr code_review.CrCtxInterface) *TeamCRController {
    return &TeamCRController{c: ctx, crCtx: cr}
}
func (ctrl *RepoCrCRController)ListRepoCrAggregateMetrics(c *gin.Context) {
    workNo := c.Query("work_no")
    if workNo == "" {
        c.JSON(http.StatusOK, errors.BuildRsp(errors.ErrorWarpper(errors.ErrParamError.ErrorCode, "员工工号信息错误"), nil))
        return
    }
    rsp, err := ctrl.crCtx.ListRepoCrAggregateMetrics(workNo)
    if err != nil {
        c.JSON(http.StatusOK, errors.BuildRsp(errors.ErrorWarpper(errors.ErrDbQueryError.ErrorCode, err.Error()), rsp))
        return
    }
    c.JSON(http.StatusOK, errors.BuildRsp(errors.ErrSuccess, rsp))
}
AI 代码解读

这样通过 gomock 生成 mock 接口可以进行测试了:

func TestListRepoCrAggregateMetrics(t *testing.T) { 
    ctrl := gomock.NewController(t)
    defer ctrl.Finish()
    m := mock.NewMockCrCtxInterface(ctrl)
    resp := &code_review.RepoCrMetricsRsp{
    }
    m.EXPECT().ListRepoCrAggregateMetrics("999999").Return(resp, nil)
    w := httptest.NewRecorder()
    ctx, engine := gin.CreateTestContext(w)
    repoCtrl := NewRepoCrCRController(ctx, m)
    engine.GET("/api/test/code_review/repo", repoCtrl.ListRepoCrAggregateMetrics)
    req, _ := http.NewRequest("GET", "/api/test/code_review/repo?work_no=999999", nil)
    engine.ServeHTTP(w, req)
    assert.Equal(t, w.Code, 200)
    got := gin.H{}
    json.NewDecoder(w.Body).Decode(&got)
    assert.EqualValues(t, got["errorCode"], 0)
}
AI 代码解读

方案三:通过 monkey patch 方式 mock 下游 (推荐)

在上面的例子中,我们需要修改代码来实现 interface 的mock,对于对象成员函数,无法进行 mock。monkey patch 通过运行时对底层指针内容修改的方式,实现对 instance method 的 mock (注意,这里要求 instance 的 method 必须是可以暴露的)。用 monkey 方式测试如下:

func TestListRepoCrAggregateMetrics(t *testing.T) {
    w := httptest.NewRecorder()
    _, engine := gin.CreateTestContext(w)
    engine.GET("/api/test/code_review/repo", ListRepoCrAggregateMetrics)
    var crCtx *code_review.CrCtx
    repoRet := code_review.RepoCrMetricsRsp{
    }
    monkey.PatchInstanceMethod(reflect.TypeOf(crCtx), "ListRepoCrAggregateMetrics",
        func(ctx *code_review.CrCtx, workNo string) (*code_review.RepoCrMetricsRsp, error) {
            if workNo == "999999" {
                repoRet.Total = 0
                repoRet.RepoCodeReview = []*code_review.RepoCodeReview{}
            }
            return &repoRet, nil
        })
    req, _ := http.NewRequest("GET", "/api/test/code_review/repo?work_no=999999", nil)
    engine.ServeHTTP(w, req)
    assert.Equal(t, w.Code, 200)
    var v map[string]code_review.RepoCrMetricsRsp
    json.Unmarshal(w.Body.Bytes(), &v)
    assert.EqualValues(t, 0, v["data"].Total)
    assert.Len(t, v["data"].RepoCodeReview, 0)
}
AI 代码解读

存储层 mock

Go-sqlmock 可以针对接口 sql/driver[3] 进行 mock。它可以不用真实的 db ,而模拟 sql driver 行为,实现强大的底层数据测试。下面是我们采用 table driven[4] 写法来进行数据相关测试的例子。

package store
import (
    "database/sql/driver"
    "github.com/DATA-DOG/go-sqlmock"
    "github.com/gin-gonic/gin"
    "github.com/jinzhu/gorm"
    "github.com/stretchr/testify/assert"
    "net/http/httptest"
    "testing"
)
type RepoCommitAndCRCountMetric struct {
    ProjectID                 uint `json:"project_id"`
    RepoCommitCount           uint `json:"repo_commit_count"`
    RepoCodeReviewCommitCount uint `json:"repo_code_review_commit_count"`
}
var (
    w      = httptest.NewRecorder()
    ctx, _ = gin.CreateTestContext(w)
    ret    = []RepoCommitAndCRCountMetric{}
)
func TestCrStore_FindColumnValues1(t *testing.T) {
    type fields struct {
        g  *gin.Context
        db func() *gorm.DB
    }
    type args struct {
        table      string
        column     string
        whereAndOr []SqlFilter
        group      string
        out        interface{}
    }
    tests := []struct {
        name      string
        fields    fields
        args      args
        wantErr   bool
        checkFunc func()
    }{
        {
            name: "whereAndOr is null",
            fields: fields{
                db: func() *gorm.DB {
                    sqlDb, mock, _ := sqlmock.New(sqlmock.QueryMatcherOption(sqlmock.QueryMatcherEqual))
                    rs1 := sqlmock.NewRows([]string{"project_id", "repo_commit_count", "repo_code_review_commit_count"}).FromCSVString("1, 2, 3")
                    mock.ExpectQuery("SELECT project_id, sum(commit_count) as repo_commit_count, sum(code_review_commit_count) as repo_code_review_commit_count FROM `metrics_repo_cr` GROUP BY project_id").WillReturnRows(rs1)
                    gdb, _ := gorm.Open("mysql", sqlDb)
                    gdb.Debug()
                    return gdb
                },
            },
            args: args{
                table:      "metrics_repo_cr",
                column:     "project_id, sum(commit_count) as repo_commit_count, sum(code_review_commit_count) as repo_code_review_commit_count",
                whereAndOr: []SqlFilter{},
                group:      "project_id",
                out:        &ret,
            },
            checkFunc: func() {
                assert.EqualValues(t, 1, ret[0].ProjectID, "project id should be 1")
                assert.EqualValues(t, 2, ret[0].RepoCommitCount, "RepoCommitCount id should be 2")
                assert.EqualValues(t, 3, ret[0].RepoCodeReviewCommitCount, "RepoCodeReviewCommitCount should be 3")
            },
        },
        {
            name: "whereAndOr is not null",
            fields: fields{
                db: func() *gorm.DB {
                    sqlDb, mock, _ := sqlmock.New(sqlmock.QueryMatcherOption(sqlmock.QueryMatcherEqual))
                    rs1 := sqlmock.NewRows([]string{"project_id", "repo_commit_count", "repo_code_review_commit_count"}).FromCSVString("1, 2, 3")
                    mock.ExpectQuery("SELECT project_id, sum(commit_count) as repo_commit_count, sum(code_review_commit_count) as repo_code_review_commit_count FROM `metrics_repo_cr` WHERE (metrics_repo_cr.project_id in (?)) GROUP BY project_id").
                        WithArgs(driver.Value(1)).WillReturnRows(rs1)
                    gdb, _ := gorm.Open("mysql", sqlDb)
                    gdb.Debug()
                    return gdb
                },
            },
            args: args{
                table:  "metrics_repo_cr",
                column: "project_id, sum(commit_count) as repo_commit_count, sum(code_review_commit_count) as repo_code_review_commit_count",
                whereAndOr: []SqlFilter{
                    {
                        Condition: SQLWHERE,
                        Query:     "metrics_repo_cr.project_id in (?)",
                        Arg:       []uint{1},
                    },
                },
                group: "project_id",
                out:   &ret,
            },
            checkFunc: func() {
                assert.EqualValues(t, 1, ret[0].ProjectID, "project id should be 1")
                assert.EqualValues(t, 2, ret[0].RepoCommitCount, "RepoCommitCount id should be 2")
                assert.EqualValues(t, 3, ret[0].RepoCodeReviewCommitCount, "RepoCodeReviewCommitCount should be 3")
            },
        },
        {
            name: "group is null",
            fields: fields{
                db: func() *gorm.DB {
                    sqlDb, mock, _ := sqlmock.New(sqlmock.QueryMatcherOption(sqlmock.QueryMatcherEqual))
                    rs1 := sqlmock.NewRows([]string{"project_id", "repo_commit_count", "repo_code_review_commit_count"}).FromCSVString("1, 2, 3")
                    mock.ExpectQuery("SELECT project_id, sum(commit_count) as repo_commit_count, sum(code_review_commit_count) as repo_code_review_commit_count FROM `metrics_repo_cr` WHERE (metrics_repo_cr.project_id in (?))").
                        WithArgs(driver.Value(1)).WillReturnRows(rs1)
                    gdb, _ := gorm.Open("mysql", sqlDb)
                    gdb.Debug()
                    return gdb
                },
            },
            args: args{
                table:  "metrics_repo_cr",
                column: "project_id, sum(commit_count) as repo_commit_count, sum(code_review_commit_count) as repo_code_review_commit_count",
                whereAndOr: []SqlFilter{
                    {
                        Condition: SQLWHERE,
                        Query:     "metrics_repo_cr.project_id in (?)",
                        Arg:       []uint{1},
                    },
                },
                group: "",
                out:   &ret,
            },
            checkFunc: func() {
                assert.EqualValues(t, 1, ret[0].ProjectID, "project id should be 1")
                assert.EqualValues(t, 2, ret[0].RepoCommitCount, "RepoCommitCount id should be 2")
                assert.EqualValues(t, 3, ret[0].RepoCodeReviewCommitCount, "RepoCodeReviewCommitCount should be 3")
            },
        },
    }
    for _, tt := range tests {
        t.Run(tt.name, func(t *testing.T) {
            cs := &CrStore{
                g: ctx,
            }
            db = tt.fields.db()
            if err := cs.FindColumnValues(tt.args.table, tt.args.column, tt.args.whereAndOr, tt.args.group, tt.args.out); (err != nil) != tt.wantErr {
                t.Errorf("FindColumnValues() error = %v, wantErr %v", err, tt.wantErr)
            }
            tt.checkFunc()
        })
    }
}
AI 代码解读

持续集成

Aone (阿里内部项目协作管理平台)提供了类似 travis-ci[5] 的功能:测试服务[6]。我们可以通过创建单测类型的任务或者直接使用实验室进行单测集成。

# 执行测试命令
mkdir -p $sourcepath/cover
RDSC_CONF=$sourcepath/config/config.yaml go test -v -cover=true -coverprofile=$sourcepath/cover/cover.cover ./...
ret=$?; if [[ $ret -ne 0 && $ret -ne 1 ]]; then exit $ret; fi
AI 代码解读

增量覆盖率可以通过 gocov/gocov-xml 转换成 xml 报告,然后通过 diff_cover 输出增量报告:

cp $sourcepath/cover/cover.cover /root/cover/cover.cover
pip install diff-cover==2.6.1
gocov convert cover/cover.cover | gocov-xml > coverage.xml
cd $sourcepath
diff-cover $sourcepath/coverage.xml --compare-branch=remotes/origin/develop > diff.out
AI 代码解读

设置触发的集成阶段:

3.jpg

参考资料
[1] https://thomasvilhena.com/2020/04/on-the-architecture-for-unit-testing
[2] https://github.com/golang/mock
[3] https://godoc.org/database/sql/driver
[4] https://github.com/golang/go/wiki/TableDrivenTests
[5] https://travis-ci.org/
相关实践学习
阿里云图数据库GDB入门与应用
图数据库(Graph Database,简称GDB)是一种支持Property Graph图模型、用于处理高度连接数据查询与存储的实时、可靠的在线数据库服务。它支持Apache TinkerPop Gremlin查询语言,可以帮您快速构建基于高度连接的数据集的应用程序。GDB非常适合社交网络、欺诈检测、推荐引擎、实时图谱、网络/IT运营这类高度互连数据集的场景。 GDB由阿里云自主研发,具备如下优势: 标准图查询语言:支持属性图,高度兼容Gremlin图查询语言。 高度优化的自研引擎:高度优化的自研图计算层和存储层,云盘多副本保障数据超高可靠,支持ACID事务。 服务高可用:支持高可用实例,节点故障迅速转移,保障业务连续性。 易运维:提供备份恢复、自动升级、监控告警、故障切换等丰富的运维功能,大幅降低运维成本。 产品主页:https://www.aliyun.com/product/gdb
相关文章
浅谈网页端IM技术及相关测试方法实践(包括WebSocket性能测试)
最开始转转的客服系统体系如IM、工单以及机器人等都是使用第三方的产品。但第三方产品对于转转的业务,以及客服的效率等都产生了诸多限制,所以我们决定自研替换第三方系统。下面主要分享一下网页端IM技术及相关测试方法,我们先从了解IM系统和WebSocket开始。
83 4
自动化测试框架的演进与实践###
本文深入探讨了自动化测试框架从诞生至今的发展历程,重点分析了当前主流框架的优势与局限性,并结合实际案例,阐述了如何根据项目需求选择合适的自动化测试策略。文章还展望了未来自动化测试领域的技术趋势,为读者提供了宝贵的实践经验和前瞻性思考。 ###
利用Postman和Apipost进行API测试的实践与优化-动态参数
在API测试中,Postman和Apipost是常用的工具。Postman内置变量功能有限,面对复杂场景时需编写JavaScript脚本,增加了维护成本。而Apipost提供丰富的内置变量、可视化动态值配置和低代码操作,支持生成真实随机数据,如邮箱、手机号等,显著提升测试效率和灵活性。对于复杂测试场景,Apipost是更好的选择,能有效降低开发与维护成本,提高测试工作的便捷性和可维护性。
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
73 5
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
探索软件测试的深度与广度:从理论到实践
在数字化时代,软件已成为我们生活中不可或缺的一部分。随着技术的不断进步和用户需求的多样化,确保软件质量变得尤为重要。本文将深入浅出地介绍软件测试的核心概念、类型及其在软件开发生命周期中的重要性。我们将通过实际案例,展示如何实施有效的测试策略,并探讨自动化测试的未来趋势,旨在为读者提供一套完整的软件测试知识体系,帮助提升软件质量和开发效率。
自动化测试框架的搭建与实践
在软件开发领域,自动化测试是提升开发效率、确保软件质量的关键手段。本文将引导读者理解自动化测试的重要性,并介绍如何搭建一个基本的自动化测试框架。通过具体示例和步骤,我们将探索如何有效实施自动化测试策略,以实现软件开发流程的优化。
143 7
探索软件测试的奥秘:从理论到实践
在软件开发的宇宙中,软件测试犹如一颗璀璨的星辰,指引着质量的方向。本文将带你穿梭于软件测试的理论与实践之间,揭示其内在的逻辑和魅力。从测试的重要性出发,我们将探讨不同类型的测试方法,并通过实际案例分析,深入理解测试用例的设计和应用。最后,我们将通过一个代码示例,展示如何将理论知识转化为实际操作,确保软件质量的同时,也提升你的测试技能。让我们一起踏上这段探索之旅,发现软件测试的无限可能。
探索软件测试的奥秘:从理论到实践
本文深入探讨了软件测试的基本概念、重要性、主要类型以及实施策略。通过分析不同测试阶段和相应的测试方法,文章旨在为读者提供一套完整的软件测试知识体系,帮助他们更好地理解和应用测试技术,确保软件产品的质量和可靠性。
94 4
电商API的测试与用途:深度解析与实践
在电子商务蓬勃发展的今天,电商API成为连接电商平台、商家、消费者和第三方开发者的重要桥梁。本文深入探讨了电商API的核心功能,包括订单管理、商品管理、用户管理、支付管理和物流管理,并介绍了有效的测试技巧,如理解API文档、设计测试用例、搭建测试环境、自动化测试、压力测试、安全性测试等。文章还详细阐述了电商API的多样化用途,如商品信息获取、订单管理自动化、用户数据管理、库存同步、物流跟踪、支付处理、促销活动管理、评价管理、数据报告和分析、扩展平台功能及跨境电商等,旨在为开发者和电商平台提供有益的参考。
140 0
探索软件测试中的自动化框架:从基础到高级实践
在当今快速发展的软件行业中,自动化测试已成为提高开发效率和保障产品质量的关键手段。本文将深入探讨软件测试自动化的各个方面,包括其重要性、主流的自动化测试框架、以及如何有效地实施自动化测试策略。我们还将通过案例分析,展示自动化测试在实际项目中的应用效果,以及面临的挑战和解决方案。无论是软件开发者还是测试工程师,了解并掌握自动化测试技术都将极大提升工作效率和产品质量。
106 0

热门文章

最新文章