开源大数据生态下的 Flink 应用实践

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 11 月 28-30 日,Flink Forward Asia 邀请来自阿里巴巴、戴尔科技集团、英特尔、Cloudera、趣头条、百度、Stream Native 等不同方向的技术专家围绕 Apache Flink 核心大数据生态探讨当下大数据的发展趋势与未来动向,并展现相关技术在一线生产场景的优秀实践。

过去十年,面向整个数字时代的关键技术接踵而至,从被人们接受,到开始步入应用。大数据与计算作为时代的关键词已被广泛认知,算力的重要性日渐凸显并发展成为企业新的增长点。Apache Flink(以下简称 Flink)以其快速、准确的算力备受关注,如何将 Flink 更好的与大数据生态技术相结合,充分挖掘数据的潜力,真正发挥数据的价值,是大多数企业面临的难题。

11 月 28-30 日,Flink Forward Asia 邀请来自阿里巴巴、戴尔科技集团、英特尔、Cloudera、趣头条、百度、Stream Native 等不同方向的技术专家围绕 Apache Flink 核心大数据生态探讨当下大数据的发展趋势与未来动向,并展现相关技术在一线生产场景的优秀实践。

点击可了解大会详情,购买参会门票

部分精彩议题概览

Apache Flink and the Apache Way

Fabian Hueske
Apache Flink PMC,Ververica Co-founder,
Software Engineer

Apache Flink is a project of the Apache Software Foundation (ASF). The ASF is the world's largest open source foundation and the home of more than 350 individual projects and initiatives.

Every ASF project is independently governed and managed by its own community but follows the principles of the ASF, the so-called Apache Way. Knowing the Apache Way is important to fully understand how the community of an ASF project works.

In this talk, I'll briefly explain the Apache Way and how ASF projects organize themselves. I'll take a look back at how the Apache Flink community started and its journey to where it is today.

Finally, I'll give you some guidance and advice that will help you to start contributing to Apache Flink and maybe become a committer at some point in the future.

Optimize Apache Flink on Kubernetes with YuniKorn Scheduler

杨巍威,Cloudera资深软件工程师
杨弢,阿里巴巴技术专家

将 Flink 运行在 K8s 很简单,但是当我们尝试在 K8s 集群上运行大规模 Flink 的任务,并对多租户环境和 SLA 有严苛要求时,各种问题开始显现出来。尤其是在调度层面,我们发现 Flink 的作业调度变慢,并且资源的分配变得混乱且毫无公平性,这样往往会导致作业饿死,或者资源浪费。于是我们开始寻求利用 YuniKorn 来解决在 K8s 上的调度问题。

YuniKorn 是一个开源的,轻量级,通用的资源调度器,可以很容易的适配到 K8s。相比原生的 K8s 调度器,YuniKorn 提供了更加丰富的调度特性,比如层级队列、资源公平性保证、强占以及更好的性能,更加适合大规模多租户、长运行以及批处理作业并存的场景下使用。YuniKorn 的调度会考量应用,用户以及队列等各个维度的资源使用情况,提供基于公平性原则的弹性容量配置。在这个议题中,我们将主要从如何通过 YuniKorn 来优化 Flink 在 K8s 上的运行,包括性能、多租户、资源公平性等方面的与大家进行探讨。

趣头条基于 Flink+ClickHouse 构建实时数据分析平台

王金海,趣头条数据平台负责人

趣头条一直致力于使用大数据分析指导业务发展。目前在实时化领域主要使用 Flink+ClickHouse 解决方案,覆盖场景包括实时数据报表、Adhoc 即时查询、事件分析、漏斗分析、留存分析等精细化运营策略,整体响应 80% 在 1 秒内完成,大大提升了用户实时取数体验,推动业务更快迭代发展。本次分享主要内容:

  1. 业务场景与现状分析
  2. Flink to Hive 的小时级场景
  3. Flink to ClickHouse 的秒级场景
  4. 未来规划

基于 Apache Flink 的边缘流式计算

袁尤军,百度云资深研发工程师
黄家天,百度云物联网部实时计算高级研发工程师

随着 5G 和 IoT 技术的发展,计算将从现在的云端蔓延到更多其他的地方,其中一个典型的场景就是边缘计算。与云端强大的计算集群相比,这些场景设备的计算能力非常受限。Apache Flink 作为新一代流式计算引擎,已经广泛应用在诸多顶级互联网公司的云上。但如何在资源极度受限的边缘设备上运行流式计算引擎,尚无成功案例可循。

我们相信 Apache Flink 不应该仅仅运行在云端,而应该运行在任何需要设备上。本次演讲,我们将分享百度智能云在边缘设备上运行流式作业的一些探索,介绍如何将作业的内存消耗降低到 10M 以内,以及如何实现作业对运行环境的零依赖。会上将重点介绍百度基于 Flink 自研的边缘流式计算框架 Creek,重点内容包括:

  1. 介绍流式计算在边缘设备的意义和挑战
  2. 介绍 Creek 的技术方案
  3. 展示 Creek 的性能指标
  4. 现场演示 Creek 作业的构建和运行

Apache Flink 与 Apache Hive 的集成

李锐,Apache Hive PMC,Apache Flink Contributor,阿里巴巴技术专家
王刚,阿里巴巴高级开发工程师

在大数据领域,Hive 已经成为数据仓库事实上的标准。为了丰富 Flink 的生态,从 1.9.0 版本开始,我们提供了 Flink 与 Hive 集成的能力,让用户可以通过 Flink 来读写 Hive 中的表。在 1.9.0 发布之后,我们进一步完善了 Flink-Hive 集成的功能,包括支持更全面的数据类型、更好地支持 DDL 以及 Function 等。

在新版本中,我们可以支持更多的应用场景,并提供更好的易用性。本次演讲将介绍 Flink-Hive 集成的设计架构、项目进展以及后续版本中的新功能。最后,我们还将演示如何使用 Flink 与 Hive 进行交互。

开源大数据生态专场完整议程

除上述议题外,开源大数据生态专场还有来自戴尔科技集团、英特尔、Stream Native 等重量级嘉宾以及 Apache Member、Apache Flink PMC、Apache Calcite Committer 等带来的更加精彩的分享。完整议程如下:

111

(11 月 28 日下午,专场议程)

_2_

(11 月 29 日上午,专场议程)

深度培训,实现技术与应用能力的积累提升

11 月 11-14 日,Flink Forward Asia 培训课程门票买一赠一,限时 3 天!点击阅读原文预约培训课程,然后加微信(ID:candy1764)提供共同参加培训的小伙伴名单,活动时间截止 11 月 14 日中午 12:00,数量有限,赠完即止,对培训心动的同学赶紧下手啦!

Apache Flink PMC 带队,超豪华阵容,阿里巴巴及 Flink 创始团队资深技术专家担任培训讲师,为开发者培训课程制定全面学习体系。

课程能够满足不同学习需求,无论是入门还是进阶,开发者可根据自身基础选择课程内容,实现技术与应用能力上的积累与提升。

课程主要大纲如下:

  • 中阶一:Apache Flink 开发人员培训

Tips:本课程为纯英文授课,同时配有2位中文技术专家支持解答问题。

本课程是对想要学习构建流应用程序的 Java 和 Scala 开发人员进行的关于 Apache Flink 的实践介绍。培训将重点介绍分布式数据流、事件时间和状态等核心概念。练习将使您有机会了解以上概念在 API 中是如何被体现的,并了解如何将这些概念组合用以解决实际问题。

  • 介绍流计算和 Apache Flink
  • DataStream API 的基础
  • 为 Flink 开发做准备(包括练习)
  • 有状态的流处理(包括练习)
  • 时间、定时器和 ProcessFunction(包括练习)
  • 连接多个流(包括练习)
  • 测试(包括练习)

说明:不需要 Apache Flink 的相关知识。

  • 中阶二:Apache Flink 运维培训

本课程是针对 Apache Flink 应用程序的部署和操作相关的实践性介绍。目标受众包括负责部署 Flink 应用程序和维护 Flink 集群的开发人员和运维人员。演示将重点介绍 Flink 运行中涉及的核心概念,以及用于部署、升级和监控 Flink 应用程序的主要工具。

  • 介绍流计算和 Apache Flink
  • 数据中心里的 Flink
  • 分布式架构介绍
  • 容器化部署(包括实际操作)
  • 状态后端和容错(包括实际操作)
  • 升级和状态迁移(包括实际操作)
  • 指标(包括实践)
  • 容量规划

说明:不需要对 Apache Flink 有先验知识。

  • 中阶三:SQL 开发人员培训

Apache Flink 支持 SQL 作为流处理和批处理的统一 API。SQL 可以用于各种各样的场景,并且相比使用 Flink 的底层 API,SQL 将更容易构建和维护。在本次培训中,您将学习到如何充分发挥使用 SQL 来编写 Apache Flink 作业的潜力。我们将研究流式 SQL 的不同案例,包括连接流数据、维表关联、窗口聚合、维护物化视图,以及使用 MATCH RECOGNIZE 子句进行模式匹配(这是 SQL 2016 新提出的标准)。

  • 介绍 SQL on Flink
  • 使用 SQL 查询动态表
  • 连接动态表
  • 模式匹配与 match_recognition
  • 生态系统&写外部表

说明:不需要 Apache Flink 的先验知识,但是需要基本的 SQL 知识。

  • 高阶:Apache Flink 调优和问题排查

在过去的几年中,我们与许多 Flink 用户合作沟通期间了解到许多将流计算作业从早期 PoC 阶段慢慢过渡到生产过程中最常见的挑战。在此次培训中,我们将集中精力介绍这些挑战,并且帮助大家一起消除它。我们将提供一个有用的故障诊断工具集,并介绍例如监控、水印、序列化、状态后端等领域的最佳实践和技巧。在实践课程的间隙中,参与者将有机会使用新学习到的知识来解决一些异常 Flink 作业表现出来的问题。同时,我们也将归纳那些使作业没有进展或吞吐量没有达到预期,或作业延迟的常见原因。

  • 时间和水印
  • 状态处理和状态后端
  • Flink 的容错机制
  • 检查点和保存点
  • DataStream API 和 ProcessFunction。

培训系列课程为精品小班教学,数量有限,预约满额将关闭入口,有相关培训需求的同学可尽早预约。详细说明:

  • 参加培训请选择购买 VIP 套票。中阶培训购买 VIP 套票 1,高阶培训购买 VIP 套票 2。
  • VIP 套票 1 可参与中阶所有课程,VIP 套票 2 可参与包括高阶、中阶培训在内的所有课程。

如果你也好奇 Flink 未来的主要探索方向,如何利用 Flink 将大数据、算力推到极致,Flink 有哪些新场景、新规划以及最佳实践等话题,来现场吧!相信这群来自一线的技术专家们,一定会刷新你对 Apache Flink 的认知。

点击「大会详情」可了解更多培训课程与 Flink Forward Asia 2019 大会议程~

▼ 关注 Ververica,Flink 爱你 ▼

_

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
2月前
|
存储 数据采集 搜索推荐
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
本篇文章探讨了 Java 大数据在智慧文旅景区中的创新应用,重点分析了如何通过数据采集、情感分析与可视化等技术,挖掘游客情感需求,进而优化景区服务。文章结合实际案例,展示了 Java 在数据处理与智能推荐等方面的强大能力,为文旅行业的智慧化升级提供了可行路径。
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
|
2月前
|
数据采集 SQL 搜索推荐
大数据之路:阿里巴巴大数据实践——OneData数据中台体系
OneData是阿里巴巴内部实现数据整合与管理的方法体系与工具,旨在解决指标混乱、数据孤岛等问题。通过规范定义、模型设计与工具平台三层架构,实现数据标准化与高效开发,提升数据质量与应用效率。
大数据之路:阿里巴巴大数据实践——OneData数据中台体系
|
3月前
|
分布式计算 监控 大数据
大数据之路:阿里巴巴大数据实践——离线数据开发
该平台提供一站式大数据开发与治理服务,涵盖数据存储计算、任务调度、质量监控及安全管控。基于MaxCompute实现海量数据处理,结合D2与DataWorks进行任务开发与运维,通过SQLSCAN与DQC保障代码质量与数据准确性。任务调度系统支持定时、周期、手动运行等多种模式,确保高效稳定的数据生产流程。
大数据之路:阿里巴巴大数据实践——离线数据开发
|
2月前
|
存储 SQL 分布式计算
大数据之路:阿里巴巴大数据实践——元数据与计算管理
本内容系统讲解了大数据体系中的元数据管理与计算优化。元数据部分涵盖技术、业务与管理元数据的分类及平台工具,并介绍血缘捕获、智能推荐与冷热分级等技术创新。元数据应用于数据标签、门户管理与建模分析。计算管理方面,深入探讨资源调度失衡、数据倾斜、小文件及长尾任务等问题,提出HBO与CBO优化策略及任务治理方案,全面提升资源利用率与任务执行效率。
|
19天前
|
人工智能 Cloud Native 算法
拔俗云原生 AI 临床大数据平台:赋能医学科研的开发者实践
AI临床大数据科研平台依托阿里云、腾讯云,打通医疗数据孤岛,提供从数据治理到模型落地的全链路支持。通过联邦学习、弹性算力与安全合规技术,实现跨机构协作与高效训练,助力开发者提升科研效率,推动医学AI创新落地。(238字)
|
2月前
|
存储 监控 大数据
大数据之路:阿里巴巴大数据实践——事实表设计
事实表是数据仓库核心,用于记录可度量的业务事件,支持高性能查询与低成本存储。主要包含事务事实表(记录原子事件)、周期快照表(捕获状态)和累积快照表(追踪流程)。设计需遵循粒度统一、事实可加性、一致性等原则,提升扩展性与分析效率。
|
3月前
|
存储 搜索推荐 算法
Java 大视界 -- Java 大数据在智慧文旅旅游线路规划与游客流量均衡调控中的应用实践(196)
本实践案例深入探讨了Java大数据技术在智慧文旅中的创新应用,聚焦旅游线路规划与游客流量调控难题。通过整合多源数据、构建用户画像、开发个性化推荐算法及流量预测模型,实现了旅游线路的精准推荐与流量的科学调控。在某旅游城市的落地实践中,游客满意度显著提升,景区流量分布更加均衡,充分展现了Java大数据技术在推动文旅产业智能化升级中的核心价值与广阔前景。
|
存储 分布式计算 大数据
大数据之路:阿里巴巴大数据实践——大数据领域建模综述
数据建模解决数据冗余、资源浪费、一致性缺失及开发低效等核心问题,通过分层设计提升性能10~100倍,优化存储与计算成本,保障数据质量并提升开发效率。相比关系数据库,数据仓库采用维度建模与列式存储,支持高效分析。阿里巴巴采用Kimball模型与分层架构,实现OLAP场景下的高性能计算与实时离线一体化。
|
3月前
|
SQL 缓存 监控
大数据之路:阿里巴巴大数据实践——实时技术与数据服务
实时技术通过流式架构实现数据的实时采集、处理与存储,支持高并发、低延迟的数据服务。架构涵盖数据分层、多流关联,结合Flink、Kafka等技术实现高效流计算。数据服务提供统一接口,支持SQL查询、数据推送与定时任务,保障数据实时性与可靠性。
|
3月前
|
存储 Java 大数据
Java 大视界 —— 基于 Java 的大数据隐私保护在金融客户信息管理中的实践与挑战(178)
本文探讨了基于 Java 的大数据隐私保护技术在金融客户信息管理中的应用与挑战。随着金融行业数字化转型加速,客户信息的安全性愈发重要。文章详细分析了数据加密、脱敏、访问控制、区块链及联邦学习等关键技术,并结合实际案例展示了其在金融机构中的应用效果,为金融科技从业者提供了宝贵的实践经验与技术参考。

热门文章

最新文章

相关产品

  • 实时计算 Flink版