Knative 基本功能深入剖析:Knative Serving 自动扩缩容 Autoscaler

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
函数计算FC,每月15万CU 3个月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: Knative Serving 默认情况下,提供了开箱即用的快速、基于请求的自动扩缩容功能 - Knative Pod Autoscaler(KPA)。下面带你体验如何在 Knative 中玩转 Autoscaler。

Knative Serving 默认情况下,提供了开箱即用的快速、基于请求的自动扩缩容功能 - Knative Pod Autoscaler(KPA)。下面带你体验如何在 Knative 中玩转 Autoscaler。

Autoscaler 机制

Knative Serving 为每个 POD 注入 QUEUE 代理容器 (queue-proxy),该容器负责向 Autoscaler 报告用户容器并发指标。Autoscaler 接收到这些指标之后,会根据并发请求数及相应的算法,调整 Deployment 的 POD 数量,从而实现自动扩缩容。




算法

Autoscaler 基于每个 POD 的平均请求数(并发数)进行扩所容处理。默认并发数为 100。
POD 数=并发请求总数/容器并发数

如果服务中并发数设置了 10,这时候如果加载了 50 个并发请求的服务,Autoscaler 就会创建了 5 个 POD (50 个并发请求/10=POD)。

Autoscaler 实现了两种操作模式的缩放算法:Stable(稳定模式)和 Panic(恐慌模式)。

稳定模式

在稳定模式下,Autoscaler 调整 Deployment 的大小,以实现每个 POD 所需的平均并发数。 POD 的并发数是根据 60 秒窗口内接收所有数据请求的平均数来计算得出。

恐慌模式

Autoscaler 计算 60 秒窗口内的平均并发数,系统需要 1 分钟稳定在所需的并发级别。但是,Autoscaler 也会计算 6 秒的恐慌窗口,如果该窗口达到目标并发的 2 倍,则会进入恐慌模式。在恐慌模式下,Autoscaler 在更短、更敏感的紧急窗口上工作。一旦紧急情况持续 60 秒后,Autoscaler 将返回初始的 60 秒稳定窗口。

|
                                  Panic Target--->  +--| 20
                                                    |  |
                                                    | <------Panic Window
                                                    |  |
       Stable Target--->  +-------------------------|--| 10   CONCURRENCY
                          |                         |  |
                          |                      <-----------Stable Window
                          |                         |  |
--------------------------+-------------------------+--+ 0
120                       60                           0
                     TIME

配置 KPA

通过上面的介绍,我们对 Knative Pod Autoscaler 工作机制有了初步的了解,那么接下来介绍如何配置 KPA。在 Knative 中配置 KPA 信息,需要修改 k8s 中的 ConfigMap:config-autoscaler,该 ConfigMap 在 knative-serving 命名空间下。查看 config-autoscaler 使用如下命令:

kubectl -n knative-serving get cm config-autoscaler

默认的 ConfigMap 如下:

apiVersion: v1
kind: ConfigMap
metadata:
 name: config-autoscaler
 namespace: knative-serving
data:
 container-concurrency-target-default: 100
 container-concurrency-target-percentage: 1.0
 enable-scale-to-zero: true
 enable-vertical-pod-autoscaling: false
 max-scale-up-rate: 10
 panic-window: 6s
 scale-to-zero-grace-period: 30s
 stable-window: 60s
 tick-interval: 2s

为 KPA 配置缩容至 0

为了正确配置使 Revision 缩容为 0,需要修改 ConfigMap 中的如下参数。

scale-to-zero-grace-period

scale-to-zero-grace-period 表示在缩为 0 之前,inactive revison 保留的运行时间(最小是3 0s)。

scale-to-zero-grace-period: 30s

stable-window

当在 stable mode 模式运行中,autoscaler 在稳定窗口期下平均并发数下的操作。

stable-window: 60s

stable-window 同样可以配置在 Revision 注释中。

autoscaling.knative.dev/window: 60s

enable-scale-to-zero

保证 enable-scale-to-zero 参数设置为 true

Termination period

Termination period(终止时间)是 POD 在最后一个请求完成后关闭的时间。POD 的终止周期等于稳定窗口值和缩放至零宽限期参数的总和。在本例中,Termination period 为 90 秒。

配置并发数

可以使用以下方法配置 Autoscaler 的并发数:

target

target 定义在给定时间(软限制)需要多少并发请求,是 Knative 中 Autoscaler 的推荐配置。

在 ConfigMap 中默认配置的并发 target 为 100。

`container-concurrency-target-default: 100`

这个值可以通过 Revision 中的 autoscaling.knative.dev/target 注释进行修改:

autoscaling.knative.dev/target: 50

containerConcurrency

注意:只有在明确需要限制在给定时间有多少请求到达应用程序时,才应该使用 containerConcurrency (容器并发)。只有当应用程序需要强制的并发约束时,才建议使用 containerConcurrency。

containerConcurrency 限制在给定时间允许并发请求的数量(硬限制),并在 Revision 模板中配置。

containerConcurrency: 0 | 1 | 2-N
  • 1: 将确保一次只有一个请求由 Revision 给定的容器实例处理;
  • 2-N: 请求的并发值限制为2或更多;
  • 0: 表示不作限制,有系统自身决定。

配置扩缩容边界(minScale 和 maxScale)

通过 minScale 和 maxScale 可以配置应用程序提供服务的最小和最大 Pod 数量。通过这两个参数配置可以控制服务冷启动或者控制计算成本。

minScale 和 maxScale 可以在 Revision 模板中按照以下方式进行配置:

spec:
  template:
    metadata:
      autoscaling.knative.dev/minScale: "2"
      autoscaling.knative.dev/maxScale: "10"

通过在 Revision 模板中修改这些参数,将会影响到 PodAutoscaler 对象,这也表明在无需修改 Knative Serving 系统配置的情况下,PodAutoscaler 对象是可被修改的。

edit podautoscaler <revision-name>

注意:这些注释适用于 Revision 的整个生命周期。即使 Revision 没有被任何 route 引用,minscale 指定的最小 POD 计数仍将提供。请记住,不可路由的 Revision 可能被垃圾收集掉。

默认情况

如果未设置 minscale 注释,pods 将缩放为零(如果根据上面提到的 configmap,enable-scale-to-zero 为 false,则缩放为 1)。

如果未设置 maxscale 注释,则创建的 Pod 数量将没有上限。

基于 KPA 配置的示例

Knative 0.7 版本部署安装可以参考:阿里云部署 Knative

我们使用官方提供的 autoscale-go 示例来进行演示,示例 service.yaml 如下:

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
  name: autoscale-go
  namespace: default
spec:
  template:
    metadata:
      labels:
        app: autoscale-go
      annotations:
        autoscaling.knative.dev/target: "10"
    spec:
      containers:
        - image: registry.cn-hangzhou.aliyuncs.com/knative-sample/autoscale-go:0.1

获取访问网关:

$ kubectl get svc istio-ingressgateway --namespace istio-system --output jsonpath="{.status.loadBalancer.ingress[*]['ip']}"
121.199.194.150

Knative 0.7 版本中获取域名信息:

$ kubectl get route autoscale-go --output jsonpath="{.status.url}"| awk -F/ '{print $3}'
autoscale-go.default.example.com

场景1:并发请求示例

如上配置,当前最大并发请求数 10。 我们执行 30s 内保持 50 个并发请求,看一下执行情况:

hey -z 30s -c 50   -host "autoscale-go.default.example.com"   "http://121.199.194.150?sleep=100&prime=10000&bloat=5"

b2

结果正如我们所预期的:扩容出来了 5 个 POD。

场景2:扩缩容边界示例

修改一下 servcie.yaml 配置如下:

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
  name: autoscale-go
  namespace: default
spec:
  template:
    metadata:
      labels:
        app: autoscale-go
      annotations:
        autoscaling.knative.dev/target: "10"
        autoscaling.knative.dev/minScale: "1"
        autoscaling.knative.dev/maxScale: "3"        
    spec:
      containers:
        - image: registry.cn-hangzhou.aliyuncs.com/knative-sample/autoscale-go:0.1

当前最大并发请求数 10,minScale 最小保留实例数为 1,maxScale 最大扩容实例数为 3。

我们依然执行 30s 内保持 50 个并发请求,看一下执行情况:

hey -z 30s -c 50   -host "autoscale-go.default.example.com"   "http://121.199.194.150?sleep=100&prime=10000&bloat=5"

b3

结果如我们所预期:最多扩容出来了 3 个POD,并且即使在无访问请求流量的情况下,保持了 1 个运行的 POD。

结论

看了上面的介绍,是不是感觉在 Knative 中配置应用扩缩容是如此简单?其实 Knative 中除了支持 KPA 之外,也支持K8s HPA。你可以通过如下配置基于 CPU 的 Horizontal POD Autoscaler(HPA)。

通过在修订模板中添加或修改 autoscaling.knative.dev/class 和 autoscaling.knative.dev/metric 值作为注释,可以将Knative 配置为使用基于 CPU 的自动缩放,而不是默认的基于请求的度量。配置如下:

spec:
  template:
    metadata:
      autoscaling.knative.dev/metric: concurrency
      autoscaling.knative.dev/class: hpa.autoscaling.knative.dev

你可以自由的将 Knative Autoscaling 配置为使用默认的 KPA 或 Horizontal POD Autoscaler(HPA)。

欢迎加入 Knative 交流群

b4

相关文章
|
存储 Java C++
人人都会的synchronized锁升级,你真正从源码层面理解过吗?
本文结合Jvm源码层面分析synchronized锁升级原理,可以帮助读者从本质上理解锁升级过程,从锁如何存储,存储在哪的疑问出发,一步一步彻底剖析偏向锁,轻量级锁,自旋锁,重量级锁的原理和机制。
人人都会的synchronized锁升级,你真正从源码层面理解过吗?
|
存储 负载均衡 Dubbo
Dubbo阶段性总结及3.0新特性
该文章是对Dubbo技术的一次总结,包括对Dubbo框架的整体架构、服务提供者发布注册原理、SPI机制、服务消费者订阅原理、服务调用原理、线程池模型、负载均衡机制、服务容错机制等内容的回顾,并简要介绍了Dubbo 3.0的新特性。
Dubbo阶段性总结及3.0新特性
|
XML JavaScript 前端开发
JavaScript中的DOM解析器DOMParser api的讲解
`DOMParser`能将XML或HTML源码字符串解析成DOM `Document`。通过`new DOMParser()`创建实例,使用`.parseFromString(string, type)`方法进行解析,其中`string`为待解析的字符串,`type`指定解析类型如`text/html`或`text/xml`等,返回一个`Document`对象。例如,可解析包含`&lt;p&gt;666&lt;/p&gt;`的字符串并获取其文本内容`666`。
601 1
|
存储 机器学习/深度学习 芯片
8086 汇编笔记(十二):int 指令 & 端口 & 直接定址表
8086 汇编笔记(十二):int 指令 & 端口 & 直接定址表
|
机器学习/深度学习 Linux Shell
python代码问题总结(下)
python代码问题总结
318 0
|
消息中间件 弹性计算 Kubernetes
Knative 架构解析
【2月更文挑战第29天】Knative作为构建无服务器产品的基础设施,建立在Kubernetes和Istio之上,提供从源代码到服务的编排、流量管理、自动扩缩容和事件绑定等功能,分为Build、Eventing和Serving三个模块,旨在确保编程模型的可移植性。
|
机器学习/深度学习 存储 编解码
TensorFlow Lite,ML Kit 和 Flutter 移动深度学习:6~11(4)
TensorFlow Lite,ML Kit 和 Flutter 移动深度学习:6~11(4)
311 0
|
运维 Kubernetes Cloud Native
Kubernetes(K8s):容器编排的未来是什么?
Kubernetes(通常简称为K8s)已经成为当今云原生应用程序开发和部署的标准。它是一个强大的开源容器编排平台,能够自动化应用程序的部署、扩展和管理。本文将深入探讨Kubernetes的现状和未来趋势,为什么它正在成为云原生开发的核心,以及如何更好地利用它。
577 0
|
网络协议 物联网 Windows
让你的Socket应用兼容IPv6
随着互联网越来越普及,以及物联网的兴起,IPv4地址已远远不够用,IPv6的普及将是不可避免的趋势。以前,我们的大部分socket程序几乎都是针对IPv4而开发,如果不做升级重构,那么使用IPv6地址的客户端将无法使用服务端提供的服务。
1572 0