OpenCV图像哈希计算及汉明距离的计算

简介:

OpenCV均值哈希与感知哈希计算,比对图像相似度,当计算出来的汉明距离越大,图像的相似度越小,汉明距离越小,图像的相似度越大,这种没有基于特征点的图像比对用在快速搜索引擎当中可以有效的进行图像搜索.

离散傅里叶变换的推导 具体代码和OpenCV代码请移步到博客

输入图片说明

下面附上Mathmetica代码

设X (n) 是一个长度为M的有限长序列,则定义X (n) 的N点离散傅里叶变换为

X (k) = DFT[x (n)] = 
\!\(\*UnderscriptBox[
OverscriptBox[\(\[Sum]\), \(N - 1\)], \(K = 0\)]\) 
   x (n) Subscript[W, N]^kn , k = 0, 1, ..., N - 1
X (k) 的傅里叶逆变换为
x (n) = IDFT[X (k)] = 
\!\(\*UnderscriptBox[
OverscriptBox[\(\[Sum]\), \(N - 1\)], \(k = 0\)]\)X (k) Subscript[
    W^-kn, N], k = 0, 1, 2, 3, 4, ...., N - 1
式中, Subscript[W, N] = 
 e^(-j*2 \[Pi]/N) N称为DFT变换区间长度,N \[GreaterSlantEqual] 
 M通常称 (1) 式和 (2) 式为离散傅里叶变换对。
下面来证明IDFT[X (k)] 的唯一性
把 (1) 代入 (2) 有
IDFT[X (k)] = (1/N) 
\!\(\*UnderscriptBox[
OverscriptBox[\(\[Sum]\), \(N - 1\)], \(k = 0\)]\)[
\!\(\*UnderscriptBox[
OverscriptBox[\(\[Sum]\), \(N - 1\)], \(m = 0\)]\) 
       x (m) Subscript[W^mk, N]] Subscript[W^-kn, N] =
  
\!\(\*UnderscriptBox[
OverscriptBox[\(\[Sum]\), \(N - 1\)], \(m = 0\)]\)x (m) (1/N) 
\!\(\*UnderscriptBox[
OverscriptBox[\(\[Sum]\), \(N - 1\)], \(k = 0\)]\)Subscript[W^(
     k (m - n)), N]
(1/N) 
\!\(\*UnderscriptBox[
OverscriptBox[\(\[Sum]\), \(N - 1\)], \(k = 0\)]\)Subscript[W^(
   k (m - n)), N] = { 
\!\(\*OverscriptBox[
UnderscriptBox[\(\[Placeholder]\), \(0\ \ \ \ \ \ \ \ \ \ \ \ \ \ m \
\[NotEqual] n + MN, M为整数\)], \(1\ \ \ \ \ \ \ \ \ \ \ \ \ m = n + MN, 
     M为整数\)]\)  
    所以,在变换区间上满足下式
     IDFT[X (k)] = x (n), 0 \[LessSlantEqual] n \[LessSlantEqual] N - 1
      (2) 式定义的离散傅里叶变换是唯一的。

感知哈希

string p_hashCode(Mat src) {
    //第一步,转换颜色空间,简化图像像素
    Mat img, dst;//初始化矩阵IO
    string rst(64, '\0');//初始化哈希值
    double dIdex[64];//初始化矩阵列表
    double mean = 0.0;//初始化均值
    int k = 0;//初始化矩阵行列计数
    //判断图像空间,当图像空间为3位空间的时候转换图像空间为灰度矩阵
    if (src.channels() == 3) {
        cvtColor(src, src, CV_BGR2GRAY);
        img = Mat_<double>(src);
    } else {
        img = Mat_<double>(src);
    }

    // 第二步,缩放尺寸 
    //这里将整个图像缩放到变成一个8*8的图像矩阵,汉明长度为8*8=64个字节长度
    //最快速的去除高频和细节,只保留结构明暗的方法就是缩小尺寸。
    //将图片缩小到8x8的尺寸,总共64个像素。摒弃不同尺寸、比例带来的图片差异。
    resize(img, img, Size(8, 8));

    // 第三步,离散余弦变换,DCT系数求取
    //离散余弦变换(DCT for Discrete Cosine Transform)是与傅里叶变换相关的一种变换      
    //它类似于离散傅里叶变换(DFT for Discrete Fourier Transform),但是只使用实数
    dct(img, dst);

    /* 第四步,求取DCT系数均值(左上角8*8区块的DCT系数)*/
    for (int i = 0; i < 8; ++i) {//迭代矩阵行
        for (int j = 0; j < 8; ++j) {//迭代矩阵列
            //第i行j列的图像灰度值
            dIdex[k] = dst.at<double>(i, j);
            //计算均值,此均值相对于8*8矩阵的总像素点的均值
            mean += dst.at<double>(i, j) / 64;
            k++;
        }
    }

    // 第五步,计算哈希值
    //遍历像素矩阵,当矩阵的灰度值大于均值的时候哈希为1,当矩阵的灰度值小于均值     
    //的时候哈希为2
    for (int i = 0; i < 64; ++i) {
        if (dIdex[i] >= mean) {
            rst[i] = '1';
        } else {
            rst[i] = '0';
        }
    }
    return rst;
}

均值哈希计算

string a_hashCode(Mat src) {
    string rst(64, '\0');
    Mat img;
    if (src.channels() == 3)
        cvtColor(src, img, CV_BGR2GRAY);
    else
        img = src.clone();
     //第一步,缩小尺寸。
     //将图片缩小到8x8的尺寸,总共64个像素
    resize(img, img, Size(8, 8));
    /* 第二步,简化色彩(Color Reduce)。
       将缩小后的图片,转为64级灰度。*/
    uchar *pData;
    for (int i = 0; i < img.rows; i++) {
        //取出矩阵每一行的数据
        pData = img.ptr<uchar>(i);
        for (int j = 0; j < img.cols; j++) {
            //将矩阵每一列的数据除以4
            pData[j] = pData[j] / 4;
        }
    }
    //第三步,计算平均值。
    //计算所有64个像素的灰度平均值.
    int average = mean(img).val[0];
    //第四步,比较像素的灰度。
    //将每个像素的灰度,与平均值进行比较。大于或等于平均值记为1,小于平均值记为0 
    Mat mask = (img >= (uchar) average);
    //第五步,计算哈希值
    int index = 0;
    for (int i = 0; i < mask.rows; i++) {
        pData = mask.ptr<uchar>(i);
        for (int j = 0; j < mask.cols; j++) {
            if (pData[j] == 0)
                rst[index++] = '0';
            else
                rst[index++] = '1';
        }
    }
    return rst;
}

计算汉明距离

/**
汉明距离函数取哈希字符串进行比对,两字符串长度必须相等才能计算准确的距离
*/
int HanmingDistance(string &str1, string &str2) {
    //判断当两个字符串的长度是否相等
    if ((str1.size() != 64) || (str2.size() != 64))
        return -1;
    int difference = 0;
    //遍历字符串比较两个字符串的0与1的不相同的地方,不相同一次就长度增加1从而计   
    //算总距离
    for (int i = 0; i < 64; i++) {
        if (str1[i] != str2[i])
            difference++;
    }
    return difference;
}
目录
相关文章
|
5月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
1250 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
6月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
86 4
|
6月前
|
存储 计算机视觉
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
本文介绍了使用OpenCV进行图像读取、显示和存储的基本操作,以及如何绘制直线、圆形、矩形和文本等几何图形的方法。
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
|
7月前
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
WK
|
7月前
|
编解码 计算机视觉 Python
如何在OpenCV中进行图像转换
在OpenCV中,图像转换涉及颜色空间变换、大小调整及类型转换等操作。常用函数如`cvtColor`可实现BGR到RGB、灰度图或HSV的转换;`resize`则用于调整图像分辨率。此外,通过`astype`或`convertScaleAbs`可改变图像数据类型。对于复杂的几何变换,如仿射或透视变换,则可利用`warpAffine`和`warpPerspective`函数实现。这些技术为图像处理提供了强大的工具。
WK
198 1
|
9月前
|
算法 计算机视觉
【Qt&OpenCV 图像的感兴趣区域ROI】
【Qt&OpenCV 图像的感兴趣区域ROI】
305 1
|
9月前
|
运维 算法 计算机视觉
【Qt&OpenCV 图像的模板匹配 matchTemplate/minMaxLoc】
【Qt&OpenCV 图像的模板匹配 matchTemplate/minMaxLoc】
125 1
|
9月前
|
存储 编解码 算法
【Qt&OpenCV 检测图像中的线/圆/轮廓 HoughLinesP/HoughCircles/findContours&drawContours】
【Qt&OpenCV 检测图像中的线/圆/轮廓 HoughLinesP/HoughCircles/findContours&drawContours】
164 0
|
8月前
|
机器学习/深度学习 XML 计算机视觉
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
|
9月前
|
计算机视觉
OpenCV中图像算术操作与逻辑操作
OpenCV中图像算术操作与逻辑操作
98 1