leetcode算法题解(Java版)-12-中序遍历

简介: 题目看上去像是二叉搜索树的题,实际上是动态规划。给到1~n的数,要找出多少种二叉查找树,对于取值为k的数来说,在它左边的又1~k-1,右边的有k+1~n.所以可以把左子树排列的种数乘右子树的种数得到以这个为根的二叉查找树的个数。

日子又恢复正常了,浪了半个月。。。
还是学习的时候感觉好~~

一、动态规划

题目描述

Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

思路

  • 题目看上去像是二叉搜索树的题,实际上是动态规划。给到1~n的数,要找出多少种二叉查找树,对于取值为k的数来说,在它左边的又1~k-1,右边的有k+1~n.所以可以把左子树排列的种数乘右子树的种数得到以这个为根的二叉查找树的个数。
  • 用一个状态数组记录下值。

代码

public class Solution {
    public int numTrees(int n) {
        if(n==0){
            return 0;
        }
        int [] f = new int[n+1];
        f[0]=1;
        for(int i=1;i<=n;i++){//外循环,刷新1,2,3,4.。。n的结果
            for(int j=1;j<=i;j++){//小循环,计算各个的值
                f[i]+=f[j-1]*f[i-j];
            }
        }
        return f[n];
    }
}

二、中序遍历

题目描述

Given a binary tree, return the inorder traversal of its nodes' values.
For example:
Given binary tree{1,#,2,3},

   1
    \
     2
    /
   3

return[1,3,2].

思路

  • 二叉树的中序遍历,就是所谓的左-中-右。
  • 递归和非递归方法,直接看代码!

代码

//递归
/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
import java.util.ArrayList;

public class Solution {
    public ArrayList<Integer> inorderTraversal(TreeNode root) {
        ArrayList<Integer>  res=new ArrayList<Integer>();
        if(root==null)return res;
        inorder(root,res);
        return res;
    }
     public static void inorder(TreeNode root, ArrayList<Integer> list){
        if(root != null){
            inorder(root.left,list);
            list.add(root.val);
            inorder(root.right,list);
        }
    }
}
//非递归
/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */

import java.util.ArrayList;
import java.util.Stack;

public class Solution {
    public ArrayList<Integer> inorderTraversal(TreeNode root) {
        ArrayList<Integer> res = new ArrayList<>();
        Stack<TreeNode> stack = new Stack<>();
        
        TreeNode node = root;
        if(root==null){
            return res;
        }
        while(!stack.isEmpty()||node!=null){
            while(node!=null){
                stack.add(node);
                node = node.left;
            }
            node = stack.pop();
            res.add(node.val);
            node = node.right;
        }
        return res;
    }
}

三、深搜

题目描述

Given a string containing only digits, restore it by returning all possible valid IP address combinations.
For example:
Given"25525511135",
return["255.255.11.135", "255.255.111.35"]. (Order does not matter)

思路

  • 深度搜索+回溯的时候剪枝

代码

import java.util.ArrayList;

public class Solution {
    public ArrayList<String> restoreIpAddresses(String s) {
        ArrayList<String> res =new  ArrayList<String>();
        ArrayList<String> ip =new ArrayList<String>();
        int start = 0 ;
        dfs(s,res,ip,start);
        return res;
    }
    
    public void dfs(String s,ArrayList<String> res,ArrayList<String> ip,int start){
        if(ip.size()==4&&start==s.length()){
            res.add(ip.get(0)+'.'+ip.get(1)+'.'+ip.get(2)+'.'+ip.get(3));
        }
        
        
        if(s.length()-start > 3*(4-ip.size())){//剪枝
            return ;
        }
        if(s.length()-start+1 < 4-ip.size()){//剪枝
            return ;
        }
        int num = 0 ;
        for(int i=start;i<start+3&&i<s.length();i++){
            num = num*10+(s.charAt(i)-'0');
            if(num<0||num>255){
                return ;
            }
            ip.add(s.substring(start,i+1));
            dfs(s,res,ip,i+1);
            ip.remove(ip.size()-1);
            if(num==0){//可以添加0,但不允许有前缀为0的
                break;
            }
        }
    }
}
目录
相关文章
|
4天前
|
存储 算法 安全
探究‘公司禁用 U 盘’背后的哈希表算法与 Java 实现
在数字化办公时代,信息安全至关重要。许多公司采取“禁用U盘”策略,利用哈希表算法高效管理外接设备的接入权限。哈希表通过哈希函数将设备标识映射到数组索引,快速判断U盘是否授权。例如,公司预先将允许的U盘标识存入哈希表,新设备接入时迅速验证,未授权则禁止传输并报警。这有效防止恶意软件和数据泄露,保障企业信息安全。 代码示例展示了如何用Java实现简单的哈希表,模拟公司U盘管控场景。哈希表不仅用于设备管理,还在文件索引、用户权限等多方面助力信息安全防线的构建,为企业数字化进程保驾护航。
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
107 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
3月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
53 0
|
2天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
16 2
|
2月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
2月前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
71 5
|
2月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
2月前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
45 2
|
2月前
|
存储 Java 开发者
在 Java 中,如何遍历一个 Set 集合?
【10月更文挑战第30天】开发者可以根据具体的需求和代码风格选择合适的遍历方式。增强for循环简洁直观,适用于大多数简单的遍历场景;迭代器则更加灵活,可在遍历过程中进行更多复杂的操作;而Lambda表达式和`forEach`方法则提供了一种更简洁的函数式编程风格的遍历方式。
|
2月前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
63 0