学习笔记CB003:分块、标记、关系抽取、文法特征结构

简介:

分块,根据句子的词和词性,按照规则组织合分块,分块代表实体。常见实体,组织、人员、地点、日期、时间。名词短语分块(NP-chunking),通过词性标记、规则识别,通过机器学习方法识别。介词短语(PP)、动词短语(VP)、句子(S)。

分块标记,IOB标记,I(inside,内部)、O(outside,外部)、B(begin,开始)。树结构存储分块。多级分块,多重分块方法。级联分块。

关系抽取,找出实体间关系。实体识别认知事物,关系识别掌握真相。三元组(X,a,Y),X、Y实体,a表达关系字符串。通过正则识别。from nltk.corpus import conll2000,print(conll2000.chunked_sents('train.txt')[99]) 。

文法,潜在无限句子集合紧凑特性。形式化模型,覆盖所有结构句子。符合多种文法句子有歧义。只能用特征方法处理。

文法特征结构,单词最后字母、词性标签、文法类别、正字拼写、指示物、关系、施事角色、受事角色。文法特征是键值对,特征结构存储形式是字典。句法协议、属性、约束、术语。import nltk,fs1 = nltk.FeatStruct(TENSE='past', NUM='sg') ,fs2 = nltk.FeatStruct(POS='N', AGR=fs1) 。nltk产生式文法描述 /nltk_data/grammars/book_grammars 。sql0.fcfg,查找国家城市sql语句文法:

% start S

S[SEM=(?np + WHERE + ?vp)] -> NP[SEM=?np] VP[SEM=?vp]

VP[SEM=(?v + ?pp)] -> IV[SEM=?v] PP[SEM=?pp]
VP[SEM=(?v + ?ap)] -> IV[SEM=?v] AP[SEM=?ap]
NP[SEM=(?det + ?n)] -> Det[SEM=?det] N[SEM=?n]
PP[SEM=(?p + ?np)] -> P[SEM=?p] NP[SEM=?np]
AP[SEM=?pp] -> A[SEM=?a] PP[SEM=?pp]

NP[SEM='Country="greece"'] -> 'Greece'
NP[SEM='Country="china"'] -> 'China'

Det[SEM='SELECT'] -> 'Which' | 'What'

N[SEM='City FROM city_table'] -> 'cities'

IV[SEM=''] -> 'are'
A[SEM=''] -> 'located'
P[SEM=''] -> 'in'

加载文法描述

import nltk
from nltk import load_parser
cp = load_parser('grammars/book_grammars/sql0.fcfg')
query = 'What cities are located in China'
tokens = query.split()
for tree in cp.parse(tokens):
    print(tree)

参考资料:

《Python 自然语言处理》

http://www.shareditor.com/blogshow?blogId=70

http://www.shareditor.com/blogshow?blogId=71

欢迎推荐上海机器学习工作机会,我的微信:qingxingfengzi

目录
相关文章
|
11天前
|
存储 关系型数据库 分布式数据库
PostgreSQL 18 发布,快来 PolarDB 尝鲜!
PostgreSQL 18 发布,PolarDB for PostgreSQL 全面兼容。新版本支持异步I/O、UUIDv7、虚拟生成列、逻辑复制增强及OAuth认证,显著提升性能与安全。PolarDB-PG 18 支持存算分离架构,融合海量弹性存储与极致计算性能,搭配丰富插件生态,为企业提供高效、稳定、灵活的云数据库解决方案,助力企业数字化转型如虎添翼!
|
9天前
|
存储 人工智能 搜索推荐
终身学习型智能体
当前人工智能前沿研究的一个重要方向:构建能够自主学习、调用工具、积累经验的小型智能体(Agent)。 我们可以称这种系统为“终身学习型智能体”或“自适应认知代理”。它的设计理念就是: 不靠庞大的内置知识取胜,而是依靠高效的推理能力 + 动态获取知识的能力 + 经验积累机制。
343 130
|
9天前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
本文讲解 Prompt 基本概念与 10 个优化技巧,结合学术分析 AI 应用的需求分析、设计方案,介绍 Spring AI 中 ChatClient 及 Advisors 的使用。
430 130
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
|
3天前
|
存储 安全 前端开发
如何将加密和解密函数应用到实际项目中?
如何将加密和解密函数应用到实际项目中?
201 138
|
9天前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
386 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
3天前
|
存储 JSON 安全
加密和解密函数的具体实现代码
加密和解密函数的具体实现代码
202 136
|
22天前
|
弹性计算 关系型数据库 微服务
基于 Docker 与 Kubernetes(K3s)的微服务:阿里云生产环境扩容实践
在微服务架构中,如何实现“稳定扩容”与“成本可控”是企业面临的核心挑战。本文结合 Python FastAPI 微服务实战,详解如何基于阿里云基础设施,利用 Docker 封装服务、K3s 实现容器编排,构建生产级微服务架构。内容涵盖容器构建、集群部署、自动扩缩容、可观测性等关键环节,适配阿里云资源特性与服务生态,助力企业打造低成本、高可靠、易扩展的微服务解决方案。
1357 8
|
8天前
|
监控 JavaScript Java
基于大模型技术的反欺诈知识问答系统
随着互联网与金融科技发展,网络欺诈频发,构建高效反欺诈平台成为迫切需求。本文基于Java、Vue.js、Spring Boot与MySQL技术,设计实现集欺诈识别、宣传教育、用户互动于一体的反欺诈系统,提升公众防范意识,助力企业合规与用户权益保护。