【Ian Goodfellow盛赞】一个GAN生成ImageNet全部1000类物体

简介: Ian Goodfellow刚刚在Twitter盛赞一篇论文,担心仅仅浏览摘要无法充分体会其突破。这篇正在ICLR-18双盲审核中的论文,提出了一种叫做“谱归一化”的新的权重归一化方法,稳定对抗生成网络判别器的训练,而且所提出的GAN变体SN-GAN是第一个成功用于ImageNet全部1000个类别的GAN变体。

就在几小时前,生成对抗网络(GAN)的发明人Ian Goodfellow在Twitter上发文,激动地推荐了一篇论文:

c351a636552bfce547bb7931c5fdde076c746a47

Goodfellow表示,虽然GAN十分擅长于生成逼真的图像,但仅仅限于单一类型,比如一种专门生成人脸的GAN,或者一种专门生成建筑物的GAN,要用一个GAN生成ImageNet全部1000种类的图像是不可能的。但是,这篇ICLR论文做到了。

是什么论文这么厉害?

点开链接,可以看到Ian Goodfellow更加热情的赞美:

4324e79eb3e9b4aa9c7a62dfcee26d695a4deabc

这是一篇很棒的论文!

这是一篇很棒的论文!我认为这篇论文没有充分说明它结论的重要性,我担心仅仅浏览摘要会让人错过这项突破。

“我们在CIFAR10,STL-10和ILSVRC2012数据集上测试了谱归一化的功效,通过实验证实了相对于那些使用此前提出的训练稳定技术训练的GAN,谱归一化GAN(SN-GAN)能够生成质量相同乃至更好的图像。”这个描述太低调了,这篇论文展现了在ILSVRC2012数据集上的一个超大的飞跃。

在这篇论文之前,仅有一种GAN在ILSVR2012数据集上表现很好,那就是AC-GAN。但AC-GAN实际上有点作弊,因为它把ImageNet分成了100个更小的数据集,每个数据集仅含10个种类的数据。新的SN-GAN是第一个用一种GAN就覆盖ImageNet全部1000种类数据的GAN变体。

将GAN扩展到更大的种类上面去一直以来都没有得到很好解决,现在这篇论文为我们带来了10倍的飞跃。

生成对抗网络的谱归一化,稳定判别器训练

看上去真的很厉害的样子。虽然Goodfellow说仅仅浏览摘要无法充分体会这篇论文的好,但是我们还是从摘要开始看起:

题目:生成对抗网络的谱归一化

摘要:生成对抗网络的研究面临的挑战之一是其训练的不稳定性。在本文中,我们提出了一种叫做“谱归一化”(spectral normalization)的新的权重归一化(weight normalization)技术,来稳定判别器的训练。这种新归一化技术计算轻巧,易于并入现有的部署当中。我们在CIFAR10,STL-10和ILSVRC2012数据集上测试了谱归一化的功效,通过实验证实了相对于那些使用此前提出的训练稳定技术训练的GAN,谱归一化GAN(SN-GAN)能够生成质量相同乃至更好的图像。

简单说,论文提出了一种新的权重归一化方法,用于稳定判别器的训练。作者在论文中写道,他们的归一化方法需要调整的超参数只要一个,就是Lipschitz常数,而且即使不调整这个超参数,也能获得满意的性能。此外,算法实现简单,额外的计算成本很小。

作者在论文中将这种新的“谱归一化”方法与其他归一化技术,比如权重归一化(Salimans&Kingma,2016)、权重削减clipping(Arjovsky等,2017)和梯度惩罚gradient penalty(Gulrajani等,2017)做了比较,并通过实验表明,在没有批量归一化、权重衰减和判别器特征匹配的情况下,谱归一化改善生成的图像质量,效果比权重归一化和梯度惩罚更好。

52115aba3054185f94d245c336a8e203ff9818cd

第一个成功应用于ImageNet全部1000个类别的GAN变体

最后,来看让Ian Goodfellow觉得没有充分强调的部分。

在论文的4.2这节,作者简单描述了他们的方法在ImageNet训练的情况,如作者所写,“我们将我们的方法应用于ILRSVRC2012数据集,训练类别conditional GANs……我们的SN-GAN是所有方法中唯一训练成功了的,据我们所知,这也是首次用单对判别器和生成器从ImageNet数据集生成不错图像的尝试”。

af5f7bfa0a765513003c70309f92bb8d7804fc3c

  • 论文地址:https://openreview.net/pdf?id=B1QRgziT-
  • OpenReview:https://openreview.net/forum?id=B1QRgziT-

原文发布时间为:2017-11-21
本文作者:费欣欣
本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”微信公众号
相关文章
|
10月前
|
人工智能 机器人 测试技术
论文介绍:零样本6D物体姿态估计框架SAM-6D,向具身智能更进一步
【5月更文挑战第4天】SAM-6D框架是零样本6D物体姿态估计的突破,能检测并准确估计新物体姿态,推动具身智能发展。该框架结合实例分割和姿态估计模型,实现RGB-D图像中的物体分割与姿态估计。在BOP基准测试中,SAM-6D超越现有方法,展示出色泛化能力,但还需应对光照变化、遮挡等问题,以提升现实环境中的性能。[论文链接](https://arxiv.org/pdf/2311.15707.pdf)
207 13
|
人工智能 算法 图形学
山大SIGGRAPH 2023 最佳论文得主分享:点云法向估计及保特征重建
山大SIGGRAPH 2023 最佳论文得主分享:点云法向估计及保特征重建
283 0
|
10月前
|
机器学习/深度学习 Shell 计算机视觉
【论文精读】CVPR2021 - ReDet:一种用于航空目标检测的旋转等变检测器
【论文精读】CVPR2021 - ReDet:一种用于航空目标检测的旋转等变检测器
|
10月前
|
机器学习/深度学习 数据可视化 计算机视觉
【论文速递】CVPR2022 - 检测测器的局部和全局知识蒸馏
【论文速递】CVPR2022 - 检测测器的局部和全局知识蒸馏
|
10月前
|
机器学习/深度学习 数据挖掘 网络安全
【论文速递】CVPR2022 - 用于半监督物体检测的尺度等效蒸馏
【论文速递】CVPR2022 - 用于半监督物体检测的尺度等效蒸馏
Vision Transformer的鸟类图像分类 数据代码分享
Vision Transformer的鸟类图像分类 数据代码分享
164 0
|
编解码 计算机视觉
最强检测 | YOLO V4?都是弟弟! CenterNet2以56.4mAP超越当前所有检测模型(附源码与论文)(二)
最强检测 | YOLO V4?都是弟弟! CenterNet2以56.4mAP超越当前所有检测模型(附源码与论文)(二)
303 0
|
计算机视觉
最强检测 | YOLO V4?都是弟弟! CenterNet2以56.4mAP超越当前所有检测模型(附源码与论文)(一)
最强检测 | YOLO V4?都是弟弟! CenterNet2以56.4mAP超越当前所有检测模型(附源码与论文)(一)
155 0
|
机器学习/深度学习 自然语言处理 算法
7 Papers & Radios | 首篇扩散模型综述;没有3D卷积的3D重建方法
7 Papers & Radios | 首篇扩散模型综述;没有3D卷积的3D重建方法
165 0
|
机器学习/深度学习 算法 机器人
从点云到NeRF,多伦多大学CSC 2547课程全面讲解3D计算机视觉
从点云到NeRF,多伦多大学CSC 2547课程全面讲解3D计算机视觉
179 0