DataWorks+Hologres:打造企业级实时数仓与高效OLAP分析平台

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
大数据开发治理平台DataWorks,资源组抵扣包 750CU*H
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 本方案基于阿里云DataWorks与实时数仓Hologres,实现数据库RDS数据实时同步至Hologres,并通过Hologres高性能OLAP分析能力,完成一站式实时数据分析。DataWorks提供全链路数据集成与治理,Hologres支持实时写入与极速查询,二者深度融合构建离在线一体化数仓,助力企业加速数字化升级。

DataWorks基于阿里云ODPS/EMR/CDP等大数据引擎,为数据仓库/数据湖/湖仓一体等解决方案提供统一的全链路大数据开发治理平台。作为阿里巴巴数据中台的建设者,DataWorks从2009年起不断沉淀阿里巴巴大数据建设方法论,同时与数万名政务/金融/零售/互联网/能源/制造等客户携手,助力产业数字化升级。

Hologres是阿里云自研一站式实时数仓,统一数据平台架构,支持海量结构化/半结构化数据的实时写入、实时更新、实时加工、实时分析,支持标准SQL(兼容PostgreSQL协议),无缝对接主流BI工具,支持OLAP查询、即席分析、在线服务、向量计算多个场景,分析性能打破TPC-H世界记录,与MaxCompute、Flink、DataWorks深度融合,提供离在线一体化全栈数仓解决方案。

一、方案概述

本方案基于阿里云实时数仓Hologres和DataWorks数据集成,通过简单的产品操作即可完成数据库RDS实时同步数据到Hologres,并通过Hologres强大的查询分析性能,完成一站式高性能的OLAP数据分析。
image.png

二、方案部署

1、创建专有网络VPC和交换机

为确保后续任务的网络连通,请务必保证Hologres与DataWorks资源组使用同⼀个VPC。

image.png

image.png

在创建专有网络页面,您可查看到创建的专有网络VPC和交换机的ID、实例名称等信息。
image.png

2、试用实时数仓Hologres。新用户可以有3个月免费试用期。

image.png

在实时数仓Hologres面板,根据如下参数说明进行配置,未提及的参数保持默认即可,单击立即试用。
image.png

image.png

大概需要5-10分钟,在实例列表页面,等待运行状态变为运行正常,即可正常使用。
image.png

3、开通DataWorks

image.png

image.png

image.png
创建工作空间列表。注意需要类似XXXX_123这种格式,即字母、数字、下划线都用到才可以。
image.png

image.png

在资源组列表页面,等待目标资源组的状态变为运行中,即可正常使用资源组。
image.png

4、创建公网NAT

首次使用NAT网关时,在创建公网NAT网关页面关联角色创建区域,单击创建关联角色。角色创建成功后即可创建NAT网关。
image.png

image.png
image.png

image.png

image.png
返回如下页面,表示您已创建成功,可以查看到创建的弹性公网IP、NAT网关等资源的资源ID。
image.png

5、创建Hologres表

在实例列表页面,但是实例ID。
image.png

在实例详情页面,单击登录实例,进入HoloWeb。
image.png

image.png

在顶部菜单栏中,单击SQL编辑器。

image.png

新建SQL查询
image.png

新建Hologres内部表。

将如下命令复制并粘贴至临时Query查询页签中,单击执行,创建Hologres内部表hologres_dataset_github_event.hologres_github_event,后续会将数据实时写入至该表中。

-- 新建schema用于创建内表并导入数据
CREATE SCHEMA IF NOT EXISTS hologres_dataset_github_event;

DROP TABLE IF EXISTS hologres_dataset_github_event.hologres_github_event;

BEGIN;
CREATE TABLE hologres_dataset_github_event.hologres_github_event (
 id bigint PRIMARY KEY,
 actor_id bigint,
 actor_login text,
 repo_id bigint,
 repo_name text,
 org_id bigint,
 org_login text,
 type text,
 created_at timestamp with time zone NOT NULL,
 action text, 
 commit_id text,
 member_id bigint,
 language text
);
CALL set_table_property ('hologres_dataset_github_event.hologres_github_event', 'distribution_key', 'id');
CALL set_table_property ('hologres_dataset_github_event.hologres_github_event', 'event_time_column', 'created_at');
CALL set_table_property ('hologres_dataset_github_event.hologres_github_event', 'clustering_key', 'created_at');

COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.id IS '事件ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.actor_id IS '事件发起⼈ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.actor_login IS '事件发起⼈登录名';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.repo_id IS 'repoID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.repo_name IS 'repo名称';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.org_id IS 'repo所属组织ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.org_login IS 'repo所属组织名称';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.type IS '事件类型';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.created_at IS '事件发⽣时间';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.action IS '事件行为';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.commit_id IS '提交记录ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.member_id IS '成员ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.language IS '编程语⾔';

COMMIT;

执行结束
image.png

6、实时同步数据至Hologres

在管理中心页面,在下拉框中选择默认⼯作空间,单击进入管理中心。
image.png

在左侧导航栏中,选择数据源 > 数据源列表。

image.png

创建MySQL数据源。

image.png

image.png

配置完成后,在连接配置区域,找到您创建的资源组,单击其右侧的测试连通性。

image.png

image.png
image.png

创建Hologres数据源。

image.png

image.png
image.png

image.png

创建实时同步任务。
image.png

在数据集成页面,在创建同步任务中,选择来源与去向数据源,单击开始创建。

来源:选择MySQL。去向:选择Hologres

image.png

在基本信息区域中,配置任务信息。 新任务名称:data_test。 同步类型:选择整库实时。

image.png

在网络与资源配置区域中,配置任务网络连通。

image.png

image.png

image.png

实时同步任务设置。在选择要同步的库表区域的源端库表中,勾选github_public_event表,然后右移。

image.png
image.png

在目标表映射区域,勾选github_public_event表,单击批量刷新映射。基于上述已创建的Hologres内部表,将目标Schema名改为hologres_dataset_github_event,目标表名改为hologres_github_event,单击完成配置。
image.png

image.png

image.png

在任务列表页面,单击启动。

image.png

image.png
image.png

在任务详情页面,您可查看到任务的执行情况,请耐心等待任务执行完成。

image.png

进度如下:
image.png

image.png

7、实时OLAP分析

返回至SQL编辑器·HoloWeb页签。在临时Query查询页签中,执行如下命令,查询实时更新的过去24小时GitHub最活跃项⽬。


SELECT
  repo_name,
  COUNT(*) AS events
FROM
  hologres_dataset_github_event.hologres_github_event
WHERE
  created_at >= now() - interval '1 day'
GROUP BY
  repo_name
ORDER BY
  events DESC
LIMIT 5;

查看同步的相关监控数据

image.png
image.png
image.png

image.png
image.png
image.png

三、方案总结

DataWorks与Hologres作为阿里云大数据生态的核心组件,构建了从数据治理到实时价值挖掘的全栈解决方案。二者深度融合后,不仅解决了企业复杂数据架构下的性能瓶颈与协作难题,更通过离在线一体化能力,将数据从采集到决策的价值转化周期缩短至毫秒级,助力政务、金融、零售等千行百业构建实时驱动的智能决策体系,加速产业数字化升级进程。

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
4月前
|
存储 SQL 监控
实时数仓和离线数仓还分不清楚?看完就懂了
本文通俗易懂地解析了实时数仓与离线数仓的核心区别,涵盖定义、特点、技术架构与应用场景,助你快速掌握两者差异,理解数据处理的“快慢之道”。
实时数仓和离线数仓还分不清楚?看完就懂了
|
5月前
|
SQL 分布式计算 DataWorks
破界·融合·进化:解码DataWorks与Hologres的湖仓一体实践
基于阿里云DataWorks与实时数仓Hologres,提供统一的大数据开发治理平台与全链路实时分析能力。DataWorks支持多行业数据集成与管理,Hologres实现海量数据的实时写入与高性能查询分析,二者深度融合,助力企业构建高效、实时的数据驱动决策体系,加速数字化升级。
|
7月前
|
存储 消息中间件 OLAP
基于 Flink+Paimon+Hologres 搭建淘天集团湖仓一体数据链路
本文整理自淘天集团高级数据开发工程师朱奥在Flink Forward Asia 2024的分享,围绕实时数仓优化展开。内容涵盖项目背景、核心策略、解决方案、项目价值及未来计划五部分。通过引入Paimon和Hologres技术,解决当前流批存储不统一、实时数据可见性差等痛点,实现流批一体存储与高效近实时数据加工。项目显著提升了数据时效性和开发运维效率,降低了使用门槛与成本,并规划未来在集团内推广湖仓一体架构,探索更多技术创新场景。
1425 3
基于 Flink+Paimon+Hologres 搭建淘天集团湖仓一体数据链路
|
5月前
|
分布式计算 Serverless OLAP
实时数仓Hologres V3.1版本发布,Serverless型实例从零开始构建OLAP系统
Hologres推出Serverless型实例,支持按需计费、无需独享资源,适合新业务探索分析。高性能查询内表及MaxCompute/OSS外表,弹性扩展至512CU,性能媲美主流开源产品。新增Dynamic Table升级、直读架构优化及ChatBI解决方案,助力高效数据分析。
实时数仓Hologres V3.1版本发布,Serverless型实例从零开始构建OLAP系统
|
5月前
|
SQL 存储 机器学习/深度学习
基于 Dify + Hologres + QWen3 进行企业级大数据的处理和分析
在数字化时代,企业如何高效处理和分析海量数据成为提升竞争力的关键。本文介绍了基于 Dify 平台与 Hologres 数据仓库构建的企业级大数据处理与分析解决方案。Dify 作为开源大语言模型平台,助力快速开发生成式 AI 应用;Hologres 提供高性能实时数仓能力。两者结合,不仅提升了数据处理效率,还实现了智能化分析与灵活扩展,为企业提供精准决策支持,助力数字化转型。
739 2
基于 Dify + Hologres + QWen3 进行企业级大数据的处理和分析
|
5月前
|
存储 传感器 数据采集
什么是实时数仓?实时数仓又有哪些应用场景?
实时数仓是一种能实现秒级数据更新和分析的系统,适用于电商、金融、物流等需要快速响应的场景。相比传统数仓,它具备更高的时效性和并发处理能力,能够帮助企业及时捕捉业务动态,提升决策效率。本文详细解析了其实现架构与核心特点,并结合实际案例说明其应用价值。
|
11月前
|
DataWorks 监控 数据建模
DataWorks产品体验评测
DataWorks产品体验评测
|
11月前
|
分布式计算 DataWorks 搜索推荐
DataWorks 产品评测与最佳实践探索!
DataWorks 是阿里巴巴推出的一站式智能大数据开发治理平台,内置15年实践经验,集成多种大数据与AI服务。本文通过实际使用角度,探讨其优势、潜力及改进建议。评测涵盖用户画像分析、数据治理、功能表现等方面,适合数字化转型企业参考。
252 1
|
12月前
|
数据采集 人工智能 DataWorks
DataWorks产品最佳实践测评
DataWorks产品最佳实践测评
|
11月前
|
数据采集 机器学习/深度学习 DataWorks
DataWorks产品评测:大数据开发治理的深度体验
DataWorks产品评测:大数据开发治理的深度体验
461 1