题目:20. 有效的括号
给定一个只包括 '(',')','{','}','[',']' 的字符串 s ,判断字符串是否有效。
有效字符串需满足:
左括号必须用相同类型的右括号闭合。
左括号必须以正确的顺序闭合。
每个右括号都有一个对应的相同类型的左括号。
示例 1:
输入:s = "()"
输出:true
示例 2:
输入:s = "()[]{}"
输出:true
示例 3:
输入:s = "(]"
输出:false
提示:
1 <= s.length <= 104
s 仅由括号 '()[]{}' 组成
题解:
class Solution { public: bool isValid(string s) { if (s.size() % 2 != 0) return false; // 如果s的长度为奇数,一定不符合要求 stack<char> st; for (int i = 0; i < s.size(); i++) { if (s[i] == '(') st.push(')'); else if (s[i] == '{') st.push('}'); else if (s[i] == '[') st.push(']'); // 第三种情况:遍历字符串匹配的过程中,栈已经为空了,没有匹配的字符了,说明右括号没有找到对应的左括号 return false // 第二种情况:遍历字符串匹配的过程中,发现栈里没有我们要匹配的字符。所以return false else if (st.empty() || st.top() != s[i]) return false; else st.pop(); // st.top() 与 s[i]相等,栈弹出元素 } // 第一种情况:此时我们已经遍历完了字符串,但是栈不为空,说明有相应的左括号没有右括号来匹配,所以return false,否则就return true return st.empty(); } };
题目:1047. 删除字符串中的所有相邻重复项
给出由小写字母组成的字符串 S,重复项删除操作会选择两个相邻且相同的字母,并删除它们。
在 S 上反复执行重复项删除操作,直到无法继续删除。
在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。
示例:
输入:"abbaca"
输出:"ca"
解释:
例如,在 "abbaca" 中,我们可以删除 "bb" 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 "aaca",其中又只有 "aa" 可以执行重复项删除操作,所以最后的字符串为 "ca"。
提示:
1 <= S.length <= 20000
S 仅由小写英文字母组成。
题解:
class Solution { public: string removeDuplicates(string S) { stack<char> st; for (char s : S) { if (st.empty() || s != st.top()) { st.push(s); } else { st.pop(); // s 与 st.top()相等的情况 } } string result = ""; while (!st.empty()) { // 将栈中元素放到result字符串汇总 result += st.top(); st.pop(); } reverse (result.begin(), result.end()); // 此时字符串需要反转一下 return result; } };
题目:150. 逆波兰表达式求值
给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。
请你计算该表达式。返回一个表示表达式值的整数。
注意:
有效的算符为 '+'、'-'、'*' 和 '/' 。
每个操作数(运算对象)都可以是一个整数或者另一个表达式。
两个整数之间的除法总是 向零截断 。
表达式中不含除零运算。
输入是一个根据逆波兰表示法表示的算术表达式。
答案及所有中间计算结果可以用 32 位 整数表示。
示例 1:
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
提示:
1 <= tokens.length <= 104
tokens[i] 是一个算符("+"、"-"、"*" 或 "/"),或是在范围 [-200, 200] 内的一个整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点:
去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中
题解:
class Solution { public: int evalRPN(vector<string>& tokens) { // 力扣修改了后台测试数据,需要用longlong stack<long long> st; for (int i = 0; i < tokens.size(); i++) { if (tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/") { long long num1 = st.top(); st.pop(); long long num2 = st.top(); st.pop(); if (tokens[i] == "+") st.push(num2 + num1); if (tokens[i] == "-") st.push(num2 - num1); if (tokens[i] == "*") st.push(num2 * num1); if (tokens[i] == "/") st.push(num2 / num1); } else { st.push(stoll(tokens[i])); } } int result = st.top(); st.pop(); // 把栈里最后一个元素弹出(其实不弹出也没事) return result; } };