基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。

1.算法运行效果图预览
(完整程序运行后无水印)
1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg

2.算法运行软件版本
MATLAB2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

plot(Error2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');


[V,I] = min(JJ);
X     = phen1(I,:);



%设置网络参数 
%卷积核
Nfilter = floor(X(1));%8;  
%卷积核大小
Sfilter = floor(X(2));%5;     
%丢失因子
drops   = X(3);%0.025;  
%残差块
Nblocks = floor(X(4));%4;       
%特征个数
Nfeats  = Dims;      

%训练
[net,INFO] = trainNetwork(Ptrain_reshape, Ttrain_reshape, lgraph, options);

Rerr = INFO.TrainingRMSE;
Rlos = INFO.TrainingLoss;


figure
subplot(211)
plot(Rerr)
xlabel('迭代次数')
ylabel('RMSE')
grid on

subplot(212)
plot(Rlos)
xlabel('迭代次数')
ylabel('LOSS')
grid on



%仿真预测
tmps   = predict(net, Ptest_reshape ); 
T_pred = double(tmps{1, 1});
%反归一化
T_pred = mapminmax('reverse', T_pred, vmax2);
ERR    = mean(abs(T_test-T_pred));
ERR

figure
plot(T_test, 'b','LineWidth', 1)
hold on
plot(T_pred, 'r','LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

figure
plotregression(T_test,T_pred,['回归']);

save R2.mat Rerr Rlos T_test T_pred ERR Error2

4.算法理论概述
时间序列预测在众多领域如金融、气象、工业生产等有着广泛的应用。准确预测时间序列的未来趋势对于决策制定、资源分配、风险评估等方面具有重要意义。传统的时间序列预测方法如 ARIMA 等在处理复杂的非线性时间序列时存在一定的局限性。随着深度学习技术的发展,时间卷积神经网络(TCN)因其能够自动学习时间序列中的复杂模式和特征,在时间序列预测中表现出良好的性能。然而,TCN 的性能高度依赖于其超参数的设置,如卷积核大小、层数、扩张率等。遗传算法(GA)作为一种强大的全局优化算法,能够在复杂的搜索空间中找到接近最优的解,将其应用于 TCN 的超参数优化,可以进一步提高 TCN 的预测性能,从而实现更准确、可靠的时间序列预测。

 TCN 主要由一系列的因果卷积层(Causal Convolution Layer)和残差连接(Residual Connection)组成。

image.png

   对于种群中的每一个染色体(即一组超参数设置),构建相应的 TCN-GRU模型,并使用训练集数据对其进行训练。训练过程中采用合适的损失函数(如前面提到的基于预测误差的函数)和优化算法(如 Adam 等)来调整 TCN-GRU的权重参数。训练完成后,使用测试集数据对 TCN-GRU模型进行评估,计算其适应度值(如基于预测误差的适应度函数)。              

   经过多次迭代后,选择适应度值最高的染色体所对应的 TCN-GRU超参数设置,使用这些超参数构建最终的 TCN-GRU模型,并使用全部的训练数据对其进行重新训练,得到优化后的 TCN-GRU时间序列预测模型。
相关文章
|
16天前
|
存储 缓存 监控
上网行为监控系统剖析:基于 Java LinkedHashMap 算法的时间序列追踪机制探究
数字化办公蓬勃发展的背景下,上网行为监控系统已成为企业维护信息安全、提升工作效能的关键手段。该系统需实时记录并深入分析员工的网络访问行为,如何高效存储和管理这些处于动态变化中的数据,便成为亟待解决的核心问题。Java 语言中的LinkedHashMap数据结构,凭借其独有的有序性特征以及可灵活配置的淘汰策略,为上网行为监控系统提供了一种兼顾性能与功能需求的数据管理方案。本文将对LinkedHashMap在上网行为监控系统中的应用原理、实现路径及其应用价值展开深入探究。
36 3
|
17天前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
3天前
|
传感器 算法 数据安全/隐私保护
基于GA遗传优化的三维空间WSN网络最优节点部署算法matlab仿真
本程序基于遗传算法(GA)优化三维空间无线传感网络(WSN)的节点部署,通过MATLAB2022A实现仿真。算法旨在以最少的节点实现最大覆盖度,综合考虑空间覆盖、连通性、能耗管理及成本控制等关键问题。核心思想包括染色体编码节点位置、适应度函数评估性能,并采用网格填充法近似计算覆盖率。该方法可显著提升WSN在三维空间中的部署效率与经济性,为实际应用提供有力支持。
|
9天前
|
机器学习/深度学习 算法 Python
matlab思维进化算法优化BP神经网络
matlab思维进化算法优化BP神经网络
|
10天前
|
机器学习/深度学习 数据采集 传感器
基于极限学习机和BP神经网络的半监督分类算法
基于极限学习机(Extreme Learning Machine, ELM)和反向传播(Backpropagation, BP)神经网络的半监督分类算法,旨在结合两者的优势:​**ELM的快速训练能力**和**BP的梯度优化能力**,同时利用少量标注数据和大量未标注数据提升分类性能。
38 6
|
9月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
361 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
9月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
223 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
9月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
333 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)