MedRAG:医学AI革命!知识图谱+四层诊断,临床准确率飙升11.32%

本文涉及的产品
图像搜索,任选一个服务类型 1个月
简介: MedRAG是南洋理工大学推出的医学诊断模型,结合知识图谱与大语言模型,提升诊断准确率11.32%,支持多模态输入与智能提问,适用于急诊、慢性病管理等多种场景。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


🩺 「三甲主任慌了?这个AI问诊比老专家多挖出3层病因」

大家好,我是蚝油菜花。你是否见过这些医疗困局:

  • 👉 患者说「肚子疼」,新手医生排查30种可能病因满头汗
  • 👉 疑难杂症病历堆成山,关键鉴别特征藏得像密室逃脱
  • 👉 问诊时间压缩到8分钟,漏问1个症状可能误诊终身...

今天要解剖的 南洋理工MedRAG ,简直是医学界的"福尔摩斯AI"!这个用四层知识图谱武装的诊断系统,刚在真实临床测试中创下三大奇迹:

  • 诊断准确率暴涨11.32% ,超越三甲主任医师团队
  • 自动生成灵魂拷问 ,从「咳嗽」追问到「夜间盗汗史」
  • 秒级解析电子病历 ,在50万病例库精准定位相似案例

最疯狂的是它的「病因拆解术」——当患者主诉头晕时,能自动关联耳石症、贫血、脑肿瘤等17种可能,用知识图谱逐层筛出关键鉴别特征!

🚀 快速阅读

MedRAG是南洋理工大学推出的医学诊断模型,结合知识图谱与大语言模型,显著提升诊断准确率。

  1. 核心功能:精准诊断支持、智能补充提问、高效患者信息解析。
  2. 技术原理:四层细粒度诊断知识图谱构建、诊断差异知识图谱搜索、知识图谱引导的LLM推理。

MedRAG 是什么

MedRAG-cover

MedRAG是南洋理工大学研究团队提出的医学诊断模型,通过结合知识图谱推理增强大语言模型(LLM)的诊断能力。模型构建了四层细粒度诊断知识图谱,可精准分类不同病症表现,通过主动补问机制填补患者信息空白。

MedRAG在真实临床数据集上诊断准确率提升了11.32%,具备良好的泛化能力,可应用于不同LLM基模型。MedRAG支持多模态输入,能实时解析症状并生成精准诊断建议。

MedRAG 的主要功能

  • 精准诊断支持:MedRAG构建了四层细粒度诊断知识图谱,能根据疾病表征间的关键差异性进行精准诊断。通过诊断差异知识图谱搜索模块,将患者的症状与知识图谱中的诊断特征进行匹配,精准定位最相似的症状节点,识别对疾病鉴别最重要的表征,为精准诊断和个性化治疗方案提供有力支持。
  • 智能补充提问:MedRAG具备主动诊断提问机制,能自动生成高效、精准的补充问题,帮助医生快速弥补信息缺失,提升诊断的准确性与可靠性。当患者提供的信息不足以区分某些疾病时,会提示模型生成有针对性的追问,完善症状描述。
  • 高效的患者信息解析:在UI交互设计上,MedRAG支持多模态输入,包括无打扰问诊语音监控、文本输入以及电子健康记录上传,确保医生能快速录入患者信息。系统会实时解析症状,在本地病例库检索相似病例,结合知识图谱推理生成精准诊断建议。

MedRAG 的技术原理

MedRAG-method

  • 四层细粒度诊断知识图谱构建:解决了现有医学知识库粒度不够细、缺乏特定疾病症状对比信息的问题。研究人员通过疾病聚类、层次聚合、语义嵌入、医学专家知识和大语言模型增强等技术,构建了包含疾病类别、亚类别、具体疾病名称以及疾病特征的四层知识图谱。
  • 诊断差异知识图谱搜索:用于匹配患者的症状与知识图谱中的诊断特征。核心流程包括临床特征分解,将患者描述拆解为独立症状表征;临床症状匹配,计算患者症状与知识图谱特征的相似度,定位最相似的症状节点;向上遍历,在知识图谱中找到最相关的疾病类别;诊断关键特征提取,识别对疾病鉴别最重要的表征。
  • 知识图谱引导的LLM推理:传统RAG仅依赖检索到的病例进行诊断生成,MedRAG通过知识图谱增强LLM的推理能力。首先基于FAISS构建高效索引,精准定位临床相似性病例;随后匹配关键诊断特征,提取患者最具鉴别力的表征信息;接着通过LLM融合检索到的病例信息、诊断差异知识图和患者信息进行联合推理,生成精准诊断建议。

如何运行 MedRAG

1. 获取仓库和依赖

克隆仓库到本地并安装依赖:

git clone https://github.com/SNOWTEAM2023/MedRAG.git
cd MedRAG
pip install -r requirements.txt

2. 修改令牌

authentication.py中替换OpenAI和Hugging Face的API令牌:

# 替换为你的OpenAI API令牌
api_key = "your_openai_api_token"   

# 替换为你的Hugging Face API令牌
hf_token = "your_huggingface_api_token"

3. 运行主脚本

更新路径和令牌后,运行main.py启动程序:

python main.py

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

相关文章
|
12天前
|
机器学习/深度学习 人工智能 算法
医学AI推理新突破!MedReason:这个AI把医学论文变「会诊专家」,8B模型登顶临床问答基准
MedReason是由多国顶尖学术机构联合开发的医学推理框架,通过知识图谱增强大模型在医疗领域的逻辑推理能力,其8B参数模型在复杂临床场景中达到最先进水平。
107 18
医学AI推理新突破!MedReason:这个AI把医学论文变「会诊专家」,8B模型登顶临床问答基准
|
1月前
|
人工智能 搜索推荐 物联网
InfiniteYou:写真AI革命!字节核弹级AI秒出定制人像,身份保持度拉满
InfiniteYou 是字节跳动推出的基于扩散变换器的身份保持图像生成框架,通过 InfuseNet 注入身份特征,结合多阶段训练策略,生成高质量、高相似度的图像,兼容多种现有工具,适用于多种应用场景。
384 29
InfiniteYou:写真AI革命!字节核弹级AI秒出定制人像,身份保持度拉满
|
28天前
|
人工智能 搜索推荐 前端开发
OpenDeepSearch:搜索引擎革命!这个开源深度搜索工具让AI代理直接读懂网页,复杂问题一键拆解
OpenDeepSearch是基于开源推理模型的深度搜索工具,通过语义重排和多源整合优化检索效果,支持与AI代理无缝集成,提供快速和专业两种搜索模式。
156 10
OpenDeepSearch:搜索引擎革命!这个开源深度搜索工具让AI代理直接读懂网页,复杂问题一键拆解
|
8天前
|
人工智能 Java 开发者
通义灵码:当AI成为你的编程搭档,效率革命已经到来
本文介绍了通义灵码作为AI编程伙伴的革命性意义及其技术特点。基于阿里云通义代码大模型CodeQwen1.5,它具备多模态代码理解、意图推理和跨语言知识融合能力,可重构开发者工作流,从智能编码到Debug预警再到文档自动化全面提升效率。数据显示,其能将常规开发时间缩短60%,错误率下降43%,新技术上手速度提升2倍。未来,通义灵码将推动需求-代码双向翻译、架构自演进等全新编程形态,助力开发者聚焦更高价值领域,开启人机共生的编程新时代。
68 9
|
1月前
|
人工智能 自然语言处理
TxGemma:谷歌DeepMind革命药物研发!270亿参数AI药理学家24小时在线
谷歌推出专为药物研发设计的TxGemma大模型,具备药物特性预测、生物文献筛选、多步推理等核心能力,提供20亿至270亿参数版本,显著提升治疗开发效率。
96 7
TxGemma:谷歌DeepMind革命药物研发!270亿参数AI药理学家24小时在线
|
7天前
|
人工智能 自然语言处理 Java
通义灵码:AI编程助手如何重塑开发者的效率革命?
通义灵码是阿里云推出的一款基于通义大模型的智能编程助手,支持Java、Python、Go等主流语言,并深度适配VSCode、JetBrains等开发环境。其核心功能包括自然语言转代码、跨文件上下文理解、行级/函数级实时补全、自动生成单元测试及性能优化建议等。此外,还提供知识问答引擎、文档智能生成和研发大数据分析等进阶功能,助力开发者提升效率。通过重构生产关系,将重复劳动转化为创造性工作,使技术债务可视化,推动人机协同编程新时代的到来。
68 1
|
1月前
|
人工智能 vr&ar 图形学
谷歌DeepMind联手牛津推出Bolt3D:AI秒速3D建模革命!单GPU仅需6秒生成3D场景
牛津大学与谷歌联合推出的Bolt3D技术,能在单个GPU上仅用6.25秒从单张或多张图像生成高质量3D场景,基于高斯溅射和几何多视角扩散模型,为游戏、VR/AR等领域带来革命性突破。
77 2
谷歌DeepMind联手牛津推出Bolt3D:AI秒速3D建模革命!单GPU仅需6秒生成3D场景
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
DeepMesh:3D建模革命!清华团队让AI自动优化拓扑,1秒生成工业级网格
DeepMesh 是由清华大学和南洋理工大学联合开发的 3D 网格生成框架,基于强化学习和自回归变换器,能够生成高质量的 3D 网格,适用于虚拟环境构建、动态内容生成、角色动画等多种场景。
161 4
DeepMesh:3D建模革命!清华团队让AI自动优化拓扑,1秒生成工业级网格
|
1月前
|
人工智能 搜索推荐 数据处理
简历诊断与面试指导:学校用AI开出“数字处方”,生成式人工智能(GAI)认证助力学生求职
本文探讨了人工智能(AI)技术在教育领域的应用,特别是学校如何利用AI进行简历诊断与面试指导,帮助学生提升求职竞争力。同时,生成式人工智能(GAI)认证的引入填补了技能认证空白,为学生职业发展提供权威背书。AI的个性化服务与GAI认证的权威性相辅相成,助力学生在数字化时代更好地应对求职挑战,实现职业目标。文章还展望了AI技术与GAI认证在未来持续推动学生成长的重要作用。
|
27天前
|
人工智能 自然语言处理 机器人
机器人研发与AI集成的加速策略:模块化生态创新革命
法思诺创新专注于机器人研发与AI集成的加速策略,推动模块化生态革命。通过软硬件分层协作,将机器人分为“躯体操作系统”和“场景思维芯片”,解决当前研发复杂、成本高昂的问题。文章分析机器人研发现状、模块化分工优势及场景芯片应用,并展望未来机器人产业的“智能机时刻”。法思诺提供创新咨询与培训服务,助力企业破解技术难题,实现软硬一体化智能创新。关注法思诺,探索真创新之路。

热门文章

最新文章

下一篇
oss创建bucket