Java也能快速搭建AI应用?一文带你玩转Spring AI可落地性

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: Java语言凭借其成熟的生态与解决方案,特别是通过 Spring AI 框架,正迅速成为 AI 应用开发的新选择。本文将探讨如何利用 Spring AI Alibaba 构建在线聊天 AI 应用,并实现对其性能的全面可观测性。

作者: 希铭


概述


随着LLM(大语言模型)基础技术的不断成熟和应用领域的广泛挖掘,越来越多的企业和开发者开始将LLM技术集成到自己的互联网服务架构中,市场上支撑培育了一款基于LLM技术搭建的爆款应用。Python受益于其丰富的框架和社区生态,成为了队列开发者构建这些AI应用的首选。应用架构急需成熟,吞吐量、访问性能、可扩展性、微服务生态等重要指标也成为大规模开发者和运维人员关注的焦点。正好,经历了互联网考验时代的Java语言在这些方面已经有了很成熟的解决方案和生态。那么,使用Java语言能否也像Python一样搭建出来AI应用呢?


作为炙手可热的Java应用开发框架,Spring给出了解决方案——Spring AI [1]Spring AI旨在简化Java AI应用程序开发,让Java开发者像使用Spring开发普通应用一样开发AI应用。以Spring AI为基础,Spring AI阿里巴巴项目 [2] 引入了阿里云通义系列大模型的全面装备,带来了丰富的工具集和深度的云服务集成,让开发者极速搭建即可实现AI应用。


在生成式AI应用中,可移植性也是一个非常重要的能力,它不仅可以解决应用本身的性能调优、错误追踪等常见问题,还能成为解决AI应用中成本控制、模型偏见、模型幻觉等问题的利器。Spring AI阿里巴巴在Spring AI可移植性基础上进行了扩展,对通义系列大模型及阿里云工具集的可移植性进一步扩展,提供了更多细节的可移植能力。另外,阿里云应用实时监控服务(ARMS)全面集成了Spring AI可落地性数据的支持,用户只需修改业务代码,只需适当调整启动配置,就能获得企业级可落地服务。


本文将基于阿里巴巴 Spring AI,借由通义千问提供的模型服务搭建一个简单的在线聊天 AI 应用,并借助 ARMS 完成对 AI 应用中调用过程的追踪和用量部署。


快速搭建 Spring AI 应用


本示范节如何基于Spring AI阿里巴巴开发一个在线聊天代理应用,并支持大模型调用本地函数来查询某城市某天的天气,可以在查看此处示例源码 [3]


1. 新建一个项目,在项目的 pom.xml 中引入 spring-ai-alibaba-starter 依赖:


<dependency>
  <groupId>com.alibaba.cloud.ai</groupId>
  <artifactId>spring-ai-alibaba-starter</artifactId>
  <version>1.0.0-M3.2</version>
</dependency>


2.修改application.yml,添加dashscope的api key,下面${AI_DASHSCOPE_API_KEY}替换为您通义大模型的API Key,获取方式参见[4]:


spring:
  application:
    name: chatmodel-example

  ai:
    dashscope:
      api-key: ${AI_DASHSCOPE_API_KEY}


3.编写聊天服务控制器类,/weather-service根据客户的提示词天气查询:


@RestController
@RequestMapping("/ai/func")
public class FunctionCallingController {

  private final ChatClient chatClient;

  public FunctionCallingController(ChatClient.Builder chatClientBuilder) {
    this.chatClient = chatClientBuilder.build();
  }

  @GetMapping("/weather-service")
  public String weatherService(String subject) {
    return chatClient.prompt()
      .function("getWeather", "根据城市查询天气", new MockWeatherService())
      .user(subject)
      .call()
      .content();
  }
}


4.编写函数供大模型调用:


public class MockWeatherService implements Function<MockWeatherService.Request, Response> {
  @Override
  public Response apply(Request request) {
    if (request.city().contains("杭州")) {
      return new Response(String.format("%s%s晴转多云, 气温32摄氏度。", request.date(), request.city()));
    }
    else if (request.city().contains("上海")) {
      return new Response(String.format("%s%s多云转阴, 气温31摄氏度。", request.date(), request.city()));
    }
    else {
      return new Response(String.format("暂时无法查询%s的天气状况。", request.city()));
    }
  }

  @JsonInclude(JsonInclude.Include.NON_NULL)
  @JsonClassDescription("根据日期和城市查询天气")
  public record Request(
      @JsonProperty(required = true, value = "city") @JsonPropertyDescription("城市, 比如杭州") String city,
      @JsonProperty(required = true, value = "date") @JsonPropertyDescription("日期, 比如2024-08-22") String date) {
  }
}


5.编写Spring Boot启动类:


@SpringBootApplication
public class FunctionCallingExampleApplication {
  public static void main(String[] args) {
    SpringApplication.run(FunctionCallingExampleApplication.class, args);
  }
}


部署应用


通过以上五步,我们的AI Agent应用已经可以正常部署,要集成可安装性把数据上报到ARMS,还需要做少量的工作。


1.修改application.yml文件,开启可设置相关数据的开关,实际生产中可以接开启:


spring:
  ai:
    chat:
      client:
        observations:
          # 记录调用者输入的内容
          include-input: true
      observations:
          # 记录大模型输出
          include-completion: true
          # 记录大模型提示词
          include-prompt: true


2.修改pom.xml文件,引入可安装性相关依赖:


<dependency>
  <!-- spring 提供的可观测工具包,用于初始化 micrometer 组件 -->
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

<dependency>
  <!-- micrometer-opentelemetry 桥接器,用于将 micrometer 链路追踪代理到 opentelemetry -->
  <groupId>io.micrometer</groupId>
  <artifactId>micrometer-tracing-bridge-otel</artifactId>
</dependency>


3. 在 Spring Boot 启动类中调整 OpenTelemetrySdk 获取方式,改为直接从 GlobalOpenTelemetry 中获取(这一步是为了获取到 Java Agent 中的 sdk 实例,而 micrometer 默认行为是初始化一个新的 sdk 实例。)


@Bean
public OpenTelemetry openTelemetry() {
    return GlobalOpenTelemetry.get();
}


4.下载 Aliyun Java Agent 并在应用的启动脚本中添加以下三行,相关内容获取可以参考接入文档[5],其中:${path-to-agent} 和 ${your-license-key} 分别替换为 Java Agent 的解压路径和从 ARMS 控制台获取到的许可证密钥:


如果您正在使用 K8s 部署的应用,则不需要修改任何的启动命令,直接在您的集群安装 ack-onepilot,并为应用添加相关标签即可,详情可参考文档 [6]。


-javaagent:/${path-to-agent}/aliyun-java-agent.jar
-Darms.licenseKey=${your-license-key}
-Darms.appName=spring-ai-alibaba-chat-demo


5.启动应用并验证效果。


演示效果


1.在浏览器地址栏输入以下链接访问:


http://localhost:8080/ai/func/weather-service?subject=2024年8月12日杭州天气怎么样?


返回如下响应:


2024年8月12日,杭州的天气预报为晴转多云,气温32摄氏度。请做好防晒措施,并留意实际天气变化。


2.登录ARMS控制台,找到spring-ai-alibaba-chat-demo应用查看调用链信息。

image.png

3. 查看某条特定的轨迹,可以查看用药信息及其他关键信息,如大模型的响应id、模型名称、温度等:

image.png

4.点击右侧的“Events”,可以查看到模型调用过程的输入输出信息:

image.png


展望


到目前,Spring AI 阿里巴巴已经全面兼容 Spring AI 最新版本可对接能力,并为通义系列多模态大模型可对接提供了支持。未来将围绕 VectorStore、Retrieve、Tool 等场景集成更加丰富的可对接性,并深度集成 ARMS 产品,提供更多详细的 AI 应用落地视图和总览大盘。您如果对 Spring AI 阿里巴巴项目感兴趣,欢迎参与社区贡献!


社区链接:https://github.com/alibaba/spring-ai-alibaba


参考文档:

[1] 春天AI

https://spring.io/projects/spring-ai

[2] Spring Cloud 阿里巴巴

https://sca.aliyun.com

[3] 在线聊天应用示例

https://github.com/alibaba/spring-ai-alibaba/tree/main/spring-ai-alibaba-examples/function-calling-example

[4] 如何获取API Key

https://help.aliyun.com/zh/model-studio/getting-started/first-api-call-to-qwen?spm=a2c4g.11186623.help-menu-search-2400256.d_0#f92b9b9cc7huw

[5] 手动安装 Java 探针

https://help.aliyun.com/zh/arms/application-monitoring/user-guide/manually-install-arms-agent-for-java-applicati ons?spm=a2c4g.11186623.help-menu-34364.d_2_0_0_1_4.3bee1af54AIgKR&scm=20140722.H_63797._.OR_help-T_cn#DAS#zh-V_1

[6] 监控ACK集群下的Java应用

https://help.aliyun.com/zh/arms/application-monitoring/getting-started/monitoring-java-applications-in-an-ack-cluster

相关实践学习
通过云拨测对指定服务器进行Ping/DNS监测
本实验将通过云拨测对指定服务器进行Ping/DNS监测,评估网站服务质量和用户体验。
相关文章
|
2天前
|
开发框架 人工智能 Java
破茧成蝶:传统J2EE应用无缝升级AI原生
本文探讨了技术挑战和解决方案,还提供了具体的实施步骤,旨在帮助企业顺利实现从传统应用到智能应用的过渡。
破茧成蝶:传统J2EE应用无缝升级AI原生
|
3天前
|
人工智能 Java API
MCP协议重大升级,Spring AI Alibaba联合Higress发布业界首个Streamable HTTP实现方案
本文由Spring AI Alibaba Contributor刘军、张宇撰写,探讨MCP官方引入的全新Streamable HTTP传输层对原有HTTP+SSE机制的重大改进。文章解析Streamable HTTP的设计思想与技术细节,并介绍Spring AI Alibaba开源框架提供的Java实现,包含无状态服务器模式、流式进度反馈模式等多种场景的应用示例。同时,文章还展示了Spring AI Alibaba + Higress的完整可运行示例,分析当前实现限制及未来优化方向,为开发者提供参考。
|
2天前
|
人工智能 Java 定位技术
Java 开发玩转 MCP:从 Claude 自动化到 Spring AI Alibaba 生态整合
本文详细讲解了Java开发者如何基于Spring AI Alibaba框架玩转MCP(Model Context Protocol),涵盖基础概念、快速体验、服务发布与调用等内容。重点包括将Spring应用发布为MCP Server(支持stdio与SSE模式)、开发MCP Client调用服务,以及在Spring AI Alibaba的OpenManus中使用MCP增强工具能力。通过实际示例,如天气查询与百度地图路线规划,展示了MCP在AI应用中的强大作用。最后总结了MCP对AI开发的意义及其在Spring AI中的实现价值。
|
3天前
|
传感器 人工智能 算法
AI技术在智慧工地中的应用有哪些?
人工智能技术(AI)通过算法和数据让计算机模拟人类智能,完成复杂任务。在智慧工地中,AI技术覆盖施工管理全流程,提升效率与安全性。主要应用包括:人员智能化管理(身份识别、行为监测)、施工安全管控(危险行为识别、设备监控、环境预警)、设备与物料管理(预测性维护、物料追溯)、施工效率与质量提升(进度调度、质量检测)及智能决策支持(大数据分析、虚拟培训)。这些技术推动建筑行业从经验驱动向数据驱动转型,助力无人化作业与全生命周期管理。
26 0
|
3天前
|
人工智能 Java 定位技术
Java 开发玩转 MCP:从 Claude 自动化到 Spring AI Alibaba 生态整合
本文以原理与示例结合的形式讲解 Java 开发者如何基于 Spring AI Alibaba 框架玩转 MCP。
|
3天前
|
人工智能 前端开发 Java
十几行代码实现 Manus,Spring AI Alibaba Graph 快速预览
Spring AI Alibaba Graph 的核心开发已完成,即将发布正式版本。开发者可基于此轻松构建工作流、智能体及多智能体系统,功能丰富且灵活。文章通过三个示例展示了其应用:1) 客户评价处理系统,实现两级问题分类与自动处理;2) 基于 ReAct Agent 的天气预报查询系统,循环执行用户指令直至完成;3) 基于 Supervisor 多智能体的 OpenManus 实现,简化了流程控制逻辑并优化了工具覆盖度。此外,还提供了运行示例的方法及未来规划,欢迎开发者参与贡献。
|
SQL 存储 Java
Java 应用与数据库的关系| 学习笔记
快速学习 Java 应用与数据库的关系。
233 0
Java 应用与数据库的关系| 学习笔记
|
SQL 存储 Java
Java 应用与数据库的关系| 学习笔记
快速学习 Java 应用与数据库的关系。
215 0
Java 应用与数据库的关系| 学习笔记
|
SQL 存储 关系型数据库
Java应用与数据库的关系|学习笔记
快速学习Java应用与数据库的关系
Java应用与数据库的关系|学习笔记
|
2月前
|
存储 监控 Java
【Java并发】【线程池】带你从0-1入门线程池
欢迎来到我的技术博客!我是一名热爱编程的开发者,梦想是编写高端CRUD应用。2025年我正在沉淀中,博客更新速度加快,期待与你一起成长。 线程池是一种复用线程资源的机制,通过预先创建一定数量的线程并管理其生命周期,避免频繁创建/销毁线程带来的性能开销。它解决了线程创建成本高、资源耗尽风险、响应速度慢和任务执行缺乏管理等问题。
207 60
【Java并发】【线程池】带你从0-1入门线程池
下一篇
oss创建bucket