【重磅发布】 免费领取阿里云百炼AI大模型100万Tokens教程出炉,API接口实战操作,DeepSeek-R1满血版即刻体验!

本文涉及的产品
通义法睿合同智能审查,1个月8份合同免费体验
简介: 阿里云百炼是一站式大模型开发及应用构建平台,支持开发者和业务人员轻松设计、构建大模型应用。通过简单操作,用户可在5分钟内开发出大模型应用或在几小时内训练专属模型,专注于创新。

什么是阿里云百炼?

阿里云的大模型服务平台百炼是一站式的大模型开发及应用构建平台。

不论是开发者还是业务人员,都能深入参与大模型应用设计构建

可以通过简单的界面操作,在5分钟内开发出一款大模型应用,或在几小时内训练出一个专属模型,从而将更多精力专注于应用创新!

同时阿里云百炼平台提供了DeepSeek系列的免费服务。

具体来说,所有用户都可以享受DeepSeek-R1、DeepSeek-V3两款模型各100万免费tokens!

此外,类似于DeepSeek-R1-Distill-Qwen-1.5B、deepseek-r1-distill-llama-70b也面向用户限时免费!

这些免费服务旨在让用户能够无门槛地体验DeepSeek系列大模型的强大功能,简直是福利满满啊!

尤其是阿里云百炼平台提供了满血版DeepSeek-R1模型

如图

我们可以在该平台上找到并部署DeepSeek-R1满血版模型,享受其强大的数学、代码、自然语言等推理能力, 还可以找到特定尺寸的DeepSeek-R1蒸馏版模型的限时免费服务。这些服务旨在降低用户的使用门槛,促进AI技术的普及和应用!

更多具体内容大家可以参考阿里云官网文档

https://help.aliyun.com/zh/model-studio/getting-started/what-is-model-studio

如图

阿里云账号注册

如果你还没有阿里云的账号,那你要先去注册一个阿里云的账号吧!

注册完成后才能使用账号登录百炼平台,否则你还怎么玩? 对吧!

阿里云首页官网注册地址

https://www.aliyun.com

这里大家直接用手机邮箱自行注册即可,就不过多赘述了!

注册完成直接登录!

然后在阿里云官网,搜索关键字百炼平台并进入!

如图

如图

开通模型100万免费tokens服务

首先我们点击管理控制台进入到阿里云百炼

登录阿里云百炼大模型服务平台后,如果页面顶部显示如下消息,那么我们需要开通百炼的模型服务,以获得免费额度。

开通百炼不会产生费用,仅调用、部署、调优模型会产生相应费用(超出免费额度后)!

如图

确认开通,领取一下!

如图

获取API Key

API Key是用于访问阿里云百炼平台上的DeepSeek-R1模型等服务的身份验证凭证,它允许我们的应用程序或客户端安全地与平台通信并执行请求的操作!

我们在阿里云百炼平台上鼠标悬停于页面右上角的用户图标,在下拉菜单中单击API-KEY

如图

然后点击创建我的API-KEY

如图

然后点击查看我们就可以获取到API KEY了!

如图

注意

不要将API Key以任何方式公开,避免因未经授权的使用造成安全风险或资金损失。

API Key是我们的重要资产,请务必妥善保管。如果你单击操作列的删除将已有API Key删除,将无法继续通过该Key访问百炼大模型提供的各项服务,如果之前在某些应用程序或服务中集成了这个API Keys,那么这些应用将会因为认证失败而无法正常工作!

安装 OpenAI SDK

那么接下来,我们就可以使用获取到的API Key阿里云百炼平台或相应的客户端中配置账户,以便开始调用DeepSeek-R1模型并消耗的免费tokens

那么这里我们通过SDK调用大模型,所需还需要再本地安装一下OpenAI

阿里云百炼官方提供了PythonJava编程语言的SDK,也提供了与OpenAI兼容的调用方式!

参考文档

https://help.aliyun.com/zh/model-studio/developer-reference/install-sdk

我们需要确保已安装Python3.8或以上版本, 如果你还没有安装Python建议去看看我前面的教程,都有介绍!

我这里安装的为Python 3.10.7

如图

然后开始安装或更新OpenAI,执行以下命令!

pip install -U openai

如图

等它安装完成..

将API Key配置到环境变量

然后建议你把API Key配置到环境变量,从而避免在代码里显式地配置API Key,降低泄漏风险!

这里我们以Windows系统为例,我们可以通过系统属性进行配置环境变量,具体步骤如下:

Windows系统桌面中按Win+Q快捷键,在搜索框中搜索编辑系统环境变量关键字,单击打开系统属性界面

如图

系统属性窗口,单击环境变量,然后在系统变量区域下单击新建,变量名填入DASHSCOPE_API_KEY,变量值填入我们的API Key

然后依次单击三个窗口的确定,关闭系统属性配置页面,完成环境变量配置!

把这个DASHSCOPE_API_KEY名字记住了!

最后我们可以测试一下,打开CMD(命令提示符)窗口执行如下命令检查环境变量是否生效

echo %DASHSCOPE_API_KEY%

如图

特别注意

我们配置环境变量后不会立即影响已经打开的命令窗口、IDE或其他正在运行的应用程序,所以需要重新启动这些程序或者打开新的命令行使环境变量生效!

快速体验 本地API远程调用DeepSeek-R1满血版大模型

一切都做好了之后,现在我们可以先来体验一下DeepSeek-R1满血大模型了!

大家可以参考官网文档

https://bailian.console.aliyun.com

找到模型广场,然后筛选一下deepseek

如图

然后点击API调用案例进行使用!

这里我们使用Python去进行调用!

https://help.aliyun.com/zh/model-studio/developer-reference/deepseek

把代码复制到自己的编辑器中,这里我使用的是PyCharm

没有安装的朋友可以去jetbrains官网免费去下载一个PyCharm社区版

下载地址:

https://www.jetbrains.com.cn/pycharm/download/?section=windows

如图

安装过程就不过多赘述了,就和平常安装其他软件一样,无脑下一步

实在清楚的,去看看我前面的教程,都有讲解!

安装好之后,打开编辑器,新建一个Python文件,把官网给出的代码粘贴过来!

如图

把代码粘贴到PyCharm

代码如下

import os
from openai import OpenAI

client = OpenAI(
    # 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
    api_key=os.getenv("DASHSCOPE_API_KEY"), # 如何获取API Key:https://help.aliyun.com/zh/model-studio/developer-reference/get-api-key
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)

completion = client.chat.completions.create(
    model="deepseek-r1",  # 此处以 deepseek-r1 为例,可按需更换模型名称。
    messages=[
        {
   'role': 'user', 'content': '9.9和9.11谁大'}
        ]
)

# 通过reasoning_content字段打印思考过程
print("思考过程:")
print(completion.choices[0].message.reasoning_content)
# 通过content字段打印最终答案
print("最终答案:")
print(completion.choices[0].message.content)

如图

这里可能要等待一会..因为官网这里给出了DeepSeek-R1类模型的思考过程可能较长,可能导致响应慢或超时!

最后显示出结果

如图

但是这里官网文档告诉我们响应太慢了,建议我们优先使用流式输出方式调用DeepSeek-R1模型

如图

复制官网给出的案例代码到编辑器执行即可!

代码如下

import os
from openai import OpenAI

client = OpenAI(
    # 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
    api_key=os.getenv("DASHSCOPE_API_KEY"),
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
    model="deepseek-r1", # 此处以 deepseek-r1 为例,可按需更换模型名称。
    messages=[
        {
   'role': 'user', 'content': '9.9和9.11谁大'}
        ],
    stream=True,
    # 解除以下注释会在最后一个chunk返回Token使用量
    # stream_options={
   
    #     "include_usage": True
    # }
    )

# 定义完整思考过程
reasoning_content = ""
# 定义完整回复
answer_content = ""
# 判断是否结束思考过程并开始回复
is_answering = False

print("\n"+"="*20+"思考过程"+"="*20+"\n")
for chunk in completion:
    # include_usage 设置为 True 会使得最后一个chunk返回 Token 使用量,而choices为空列表,此处进行判断
    if chunk.choices == []:
        print("\n"+"="*20+"Token 使用情况"+"="*20+"\n")
        print(chunk.usage)
    # 以下为思考与回复的步骤
    else:
        # include_usage 设置为 True 时,倒数第二个chunk会不包含 reasoning_content 字段,因此需要进行判断
        if hasattr(chunk.choices[0].delta, 'reasoning_content') == False:
            pass
        else:
            # 有时可能会出现思考过程与回复皆为空的情况,此时忽略即可
            if chunk.choices[0].delta.reasoning_content == "" and chunk.choices[0].delta.content == "":
                pass
            else:
                # 如果思考结果为空,则开始打印完整回复
                if chunk.choices[0].delta.reasoning_content == "" and is_answering == False:
                    print("\n"+"="*20+"完整回复"+"="*20+"\n")
                    # 防止打印多个“完整回复”标记
                    is_answering = True
                # 如果思考过程不为空,则打印思考过程
                if chunk.choices[0].delta.reasoning_content != "":
                    print(chunk.choices[0].delta.reasoning_content,end="")
                    reasoning_content += chunk.choices[0].delta.reasoning_content
                # 如果回复不为空,则打印回复。回复一般会在思考过程结束后返回
                elif chunk.choices[0].delta.content != "":
                    print(chunk.choices[0].delta.content,end="")
                    answer_content += chunk.choices[0].delta.content

# 如果您需要打印完整思考过程与完整回复,请将以下代码解除注释后运行
# print("="*20+"完整思考过程"+"="*20+"\n")
# print(f"{reasoning_content}")
# print("="*20+"完整回复"+"="*20+"\n")
# print(f"{answer_content}")

如图

那么这就简单的实现了在本地PyCharm开发环境中,通过编程接口API对部署于云端服务的阿里云百炼平台DeepSeek-R1大模型的远程程序化访问与调用!

以上代码中,我们都可以对有免费额度以及限时免费模型名称进行调用

详情参考文档给出的代码案例和模型名称!

如图

这么多福利难道还不够你使用吗!

如图

查看token使用情况

那我们怎么知道现在使用了多少token

例如查看DeepSeek-R1token消耗 我们可以在阿里云百炼平台控制台中,找到与DeepSeek-R1模型相关的token消耗信息!

定期检查token的消耗情况,以确保在免费tokens用完之前能够及时调整或续费!~

如图

最后

阿里云百炼平台震撼发布DeepSeek系列等大模型,并且慷慨赠送百万级免费tokens,满满诚意,点燃自然语言处理领域创新火花,所以大家还不赶紧来领取使用起来~要是错过这波福利你肠子都要悔青~ 信不信~~🥵🥵

相关文章
|
12天前
|
人工智能 弹性计算 Ubuntu
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
本文介绍了如何使用阿里云提供的DeepSeek-R1大模型解决方案,通过Chatbox和Dify平台调用百炼API,实现稳定且高效的模型应用。首先,文章详细描述了如何通过Chatbox配置API并开始对话,适合普通用户快速上手。接着,深入探讨了使用Dify部署AI应用的过程,包括选购云服务器、安装Dify、配置对接DeepSeek-R1模型及创建工作流,展示了更复杂场景下的应用潜力。最后,对比了Chatbox与Dify的输出效果,证明Dify能提供更详尽、精准的回复。总结指出,阿里云的解决方案不仅操作简便,还为专业用户提供了强大的功能支持,极大提升了用户体验和应用效率。
743 19
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
|
14天前
|
人工智能 自然语言处理 API
零门槛,即刻拥有DeepSeek-R1满血版——调用API及部署各尺寸模型
本文介绍了如何利用阿里云技术快速部署和使用DeepSeek系列模型,涵盖满血版API调用和云端部署两种方案。DeepSeek在数学、代码和自然语言处理等复杂任务中表现出色,支持私有化部署和企业级加密,确保数据安全。通过详细的步骤和代码示例,帮助开发者轻松上手,提升工作效率和模型性能。解决方案链接:[阿里云DeepSeek方案](https://www.aliyun.com/solution/tech-solution/deepseek-r1-for-platforms?utm_content=g_1000401616)。
零门槛,即刻拥有DeepSeek-R1满血版——调用API及部署各尺寸模型
|
10天前
|
机器人 API
零门槛,即刻拥有DeepSeek-R1满血版(阿里云百炼-API)
本文介绍如何使用阿里云百炼部署的满血版DeepSeek-R1进行API调用。通过获取API Key并使用简单代码,可快速体验DeepSeek的强大功能。具体步骤包括获取API Key、编写调用代码及查看返回结果。链接:[解决方案](https://blog.csdn.net/qwe1110/article/details/146020743) 和 [API文档](https://help.aliyun.com/zh/model-studio/developer-reference/deepseek)。
136 17
|
9天前
|
机器学习/深度学习 设计模式 API
Python 高级编程与实战:构建 RESTful API
本文深入探讨了使用 Python 构建 RESTful API 的方法,涵盖 Flask、Django REST Framework 和 FastAPI 三个主流框架。通过实战项目示例,详细讲解了如何处理 GET、POST 请求,并返回相应数据。学习这些技术将帮助你掌握构建高效、可靠的 Web API。
|
9天前
|
存储 监控 API
1688平台API接口实战:Python实现店铺全量商品数据抓取
本文介绍如何使用Python通过1688开放平台的API接口自动化抓取店铺所有商品数据。首先,开发者需在1688开放平台完成注册并获取App Key和App Secret,申请“商品信息查询”权限。接着,利用`alibaba.trade.product.search4trade`接口,构建请求参数、生成MD5签名,并通过分页机制获取全量商品数据。文中详细解析了响应结构、存储优化及常见问题处理方法,还提供了竞品监控、库存预警等应用场景示例和完整代码。
|
14天前
|
人工智能 物联网 API
又又又上新啦!魔搭免费模型推理API支持DeepSeek-R1,Qwen2.5-VL,Flux.1 dev及Lora等
又又又上新啦!魔搭免费模型推理API支持DeepSeek-R1,Qwen2.5-VL,Flux.1 dev及Lora等
|
24天前
|
人工智能 自然语言处理 运维
AI性能极致体验:通过阿里云平台高效调用满血版DeepSeek-R1模型
DeepSeek是近期热门的开源大语言模型(LLM),以其强大的训练和推理能力备受关注。然而,随着用户需求的增长,其官网在高并发和大数据处理场景下常面临服务不稳定的问题。本文将深度测评通过阿里云平台调用满血版DeepSeek模型(671B),以充分发挥其性能和稳定性。阿里云提供高效、低延迟、大规模并发支持及稳定的云服务保障,并为用户提供100万免费token,简化操作流程,确保企业在AI应用上的高效性和成本效益。尽管如此,DeepSeek API目前不支持联网搜索和图片、文档分析功能,需结合其他工具实现。
924 17
|
12天前
|
机器学习/深度学习 开发框架 API
Python 高级编程与实战:深入理解 Web 开发与 API 设计
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧以及数据科学和机器学习。本文将深入探讨 Python 在 Web 开发和 API 设计中的应用,并通过实战项目帮助你掌握这些技术。
|
15天前
|
Cloud Native 安全 Serverless
云原生应用实战:基于阿里云Serverless的API服务开发与部署
随着云计算的发展,Serverless架构日益流行。阿里云函数计算(Function Compute)作为Serverless服务,让开发者无需管理服务器即可运行代码,按需付费,简化开发运维流程。本文从零开始,介绍如何使用阿里云函数计算开发简单的API服务,并探讨其核心优势与最佳实践。通过Python示例,演示创建、部署及优化API的过程,涵盖环境准备、代码实现、性能优化和安全管理等内容,帮助读者快速上手Serverless开发。
|
18天前
|
机器学习/深度学习 人工智能 机器人
AI成本革命:DeepSeek-R1与OpenAI的颠覆性突破重构企业智能新范式
AI成本革命:DeepSeek-R1与OpenAI的颠覆性突破重构企业智能新范式

热门文章

最新文章

相关产品

  • 大模型服务平台百炼