解决方案 | AI 大模型助力客户对话分析获奖名单公布!

简介: 解决方案 | AI 大模型助力客户对话分析获奖名单公布!

a2d02805-8497-4ce3-a399-ffdda4c5ab47.png


【最优奖获奖名单】

评选标准:官方评定最佳评测文章

活动奖励skg颈椎按摩仪 + 评测证书 + 官方流量推荐

获奖链接

博主昵称

https://developer.aliyun.com/article/1641917

DreamSpark

⚠️请以上获奖博主于2024年12月18日前将收货地址和联系方式发送给对应工作人员【钉钉号:4g8-2459vylys,逾期无法寄送奖品,感谢理解。



【潜力奖获奖名单】

评选标准:官方评定有效改进建议

活动奖励:U型已通过1积分形式发放,获奖用户请于2024年12月14日前,前往👉积分商城选择对应1积分商品兑换,逾期失效。

相关文章
|
1月前
|
人工智能 算法 开发者
开源VLM“华山论剑”丨AI Insight Talk多模态专场直播预告
开源VLM“华山论剑”丨AI Insight Talk多模态专场直播预告
192 10
开源VLM“华山论剑”丨AI Insight Talk多模态专场直播预告
|
30天前
|
人工智能 安全 数据中心
|
2月前
|
消息中间件 人工智能 资源调度
云上AI推理平台全掌握 (5):大模型异步推理服务
针对大模型推理服务中“高计算量、长时延”场景下同步推理的弊端,阿里云人工智能平台 PAI 推出了一套基于独立的队列服务异步推理框架,解决了异步推理的负载均衡、实例异常时任务重分配等问题,确保请求不丢失、实例不过载。
|
1月前
|
数据采集 人工智能 自然语言处理
让AI读懂代码需求:模块化大模型微调助力高效代码理解与迁移
本文介绍了一种解决开源项目代码升级中“用户需求关联相应代码”难题的创新方法。面对传统Code RAG和Code Agent在召回率、准确率和稳定性上的不足,以及领域“黑话”和代码风格差异带来的挑战,作者团队提出并实践了一套以大模型微调(SFT)为核心的解决方案。
356 21
|
2月前
|
机器学习/深度学习 人工智能 自动驾驶
AI Agent多模态融合策略研究与实证应用
本文从多模态信息融合的理论基础出发,构建了一个结合图像与文本的AI Agent模型,并通过PyTorch代码实现了完整的图文问答流程。未来,多模态智能体将在医疗、自动驾驶、虚拟助手等领域展现巨大潜力。模型优化的核心是提升不同模态的协同理解与推理能力,从而打造真正“理解世界”的AI Agent。
AI Agent多模态融合策略研究与实证应用
|
2月前
|
机器学习/深度学习 数据采集 人工智能
全能高手&科学明星,上海AI实验室开源发布『书生』科学多模态大模型Intern-S1 | WAIC 2025
7月26日,2025世界人工智能大会(WAIC 2025)正式开幕。在当天下午举行的科学前沿全体会议上,上海人工智能实验室(上海AI实验室)发布并开源『书生』科学多模态大模型Intern-S1。
113 0
|
人工智能 缓存 NoSQL
【深度】企业 AI 落地实践(四):如何构建端到端的 AI 应用观测体系
本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
GPT为定制AI应用工程师转型第一周学习计划
本计划帮助开发者快速入门AI领域,首周涵盖AI基础理论、Python编程及PyTorch实战。前两天学习机器学习、深度学习与Transformer核心概念,掌握LLM工作原理。第三至四天快速掌握Python语法与Jupyter使用,完成基础编程任务。第五至七天学习PyTorch,动手训练MNIST手写识别模型,理解Tensor操作与神经网络构建。
124 0