心跳信号分类预测Task1 赛题理解

简介: 心跳信号分类预测Task1 赛题理解

一、赛题理解

Tip:本次新人赛是Datawhale与天池联合发起的零基础入门系列赛事第五场 —— 零基础入门心电图心跳信号多分类预测挑战赛。

1.1、赛题概况

比赛要求参赛选手根据给定的数据集,建立模型,预测不同的心跳信号。赛题以预测心电图心跳信号类别为任务,数据集报名后可见并可下载,该该数据来自某平台心电图数据记录,总数据量超过20万,主要为1列心跳信号序列数据,其中每个样本的信号序列采样频次一致,长度相等。为了保证比赛的公平性,将会从中抽取10万条作为训练集,2万条作为测试集A,2万条作为测试集B,同时会对心跳信号类别(label)信息进行脱敏。

通过这道赛题来引导大家走进医疗大数据的世界,主要针对于于竞赛新人进行自我练习,自我提高。

1.1.1、数据概况

此处已经给了两个数据,分别是:train.csv test.csv


1.2、预测指标

选手需提交4种不同心跳信号预测的概率,选手提交结果与实际心跳类型结果进行对比,求预测的概率与真实值差值的绝对值。

具体计算公式如下:

总共有n个病例,针对某一个信号,若真实值为[y1,y2,y3,y4],模型预测概率值为[a1,a2,a3,a4],那么该模型的评价指标abs-sum为

image.png

例如,某心跳信号类别为1,通过编码转成[0,1,0,0],预测不同心跳信号概率为[0.1,0.7,0.1,0.1],那么这个信号预测结果的abs-sum为

image.png

还有其他的预测指标,在这里就不在叙述,但要知道混淆矩阵。

1.3、赛题分析
  • 本题为传统的数据挖掘问题,通过数据科学以及机器学习深度学习的办法来进行建模得到结果。
  • 本题为典型的多分类问题,心跳信号一共有4个不同的类别
  • 主要应用xgb、lgb、catboost,以及pandas、numpy、matplotlib、seabon、sklearn、keras等等数据挖掘常用库或者框架来进行数据挖掘任务。
二、、跑通baseline

本次是在本机上跑的,跑的比较缓慢,第一次跑修改了一个参数,不小心把分数改小了(尴尬),代码

相关文章
|
存储 安全 Java
HashMap的详细解读
HashMap的详细解读
118 0
|
芯片
毕业设计|基于stm32单片机的app视频遥控抽水灭火小车设计
毕业设计|基于stm32单片机的app视频遥控抽水灭火小车设计
363 0
|
JavaScript
Vue中的mixins和extend的区别是什么?
Vue中的mixins和extend的区别是什么?
167 0
|
数据采集 机器学习/深度学习 Python
心跳信号分类预测Task3 特征处理
心跳信号分类预测Task3 特征处理
194 0
|
Linux iOS开发 MacOS
【已解决】ModuleNotFoundError: No module named ‘IPython‘
【已解决】ModuleNotFoundError: No module named ‘IPython‘
|
机器学习/深度学习 并行计算 PyTorch
如何搭建深度学习的多 GPU 服务器
如何搭建深度学习的多 GPU 服务器
如何搭建深度学习的多 GPU 服务器
|
机器学习/深度学习 PyTorch API
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
|
机器学习/深度学习 编解码 TensorFlow
MobileNetV3架构解析与代码复现
MobileNet模型基于深度可分离卷积,这是一种分解卷积的形式,将标准卷积分解为深度卷积和`1*1`的点卷积。对于MobileNet,深度卷积将单个滤波器应用于每个输入通道,然后,逐点卷积应用`1*1`卷积将输出与深度卷积相结合。
2809 0
MobileNetV3架构解析与代码复现
|
监控 Go 开发者
Golang深入浅出之-Goroutine泄漏检测与避免:pprof与debug包
【5月更文挑战第2天】本文介绍了Go语言并发编程中可能遇到的Goroutine泄漏问题,以及如何使用`pprof`和`debug`包来检测和防止这种泄漏。常见的问题包括忘记关闭channel和无限制创建goroutine。检测方法包括启动pprof服务器以监控Goroutine数量,使用`debug.Stack()`检查堆栈,以及确保每个Goroutine有明确的结束条件。通过这些手段,开发者可以有效管理Goroutine,维持程序性能。
502 7
|
机器学习/深度学习 自然语言处理 算法
分词算法在自然语言处理中的基本原理与应用场景
分词算法在自然语言处理中的基本原理与应用场景