比 requests 更强大 Python 库,让你的爬虫效率提高一倍!

简介: 比 requests 更强大 Python 库,让你的爬虫效率提高一倍!

什么是协程?

简单来说,协程是一种基于线程之上,但又比线程更加轻量级的存在。对于系统内核来说,协程具有不可见的特性,所以这种由 程序员自己写程序来管理 的轻量级线程又常被称作 "用户空间线程"。

协程比多线程好在哪呢?

1. 线程的控制权在操作系统手中,而 协程的控制权完全掌握在用户自己手中,因此利用协程可以减少程序运行时的上下文切换,有效提高程序运行效率。2. 建立线程时,系统默认分配给线程的 栈 大小是 1 M,而协程更轻量,接近 1 K 。因此可以在相同的内存中开启更多的协程。3. 由于协程的本质不是多线程而是单线程,所以不需要多线程的锁机制。因为只有一个线程,也不存在同时写变量而引起的冲突。在协程中控制共享资源不需要加锁,只需要判断状态即可。所以协程的执行效率比多线程高很多,同时也有效避免了多线程中的竞争关系。

协程的适用 & 不适用场景

适用场景:协程适用于被阻塞的,且需要大量并发的场景。不适用场景:协程不适用于存在大量计算的场景(因为协程的本质是单线程来回切换),如果遇到这种情况,还是应该使用其他手段去解决。

初探异步 http 框架 httpx

至此我们对 "协程" 应该有了个大概的了解,但故事说到这里,相信有朋友还是满脸疑问:"协程" 对于接口测试有什么帮助呢?不要着急,答案就在下面。相信用过 Python 做接口测试的朋友都对 requests 库不陌生。requests 中实现的 http 请求是同步请求,但其实基于 http 请求 IO 阻塞的特性,非常适合用协程来实现 "异步" http 请求从而提升测试效率。 相信早就有人注意到了这点,于是在 Github 经过了一番探索后,果不其然,最终寻找到了支持协程 "异步" 调用 http 的开源库: httpx

什么是 httpx

httpx 是一个几乎继承了所有 requests 的特性并且支持 "异步" http 请求的开源库。简单来说,可以认为 httpx 是强化版 requests。下面大家可以跟着我一起见识一下 httpx 的强大

安装

httpx 的安装非常简单,在 Python 3.6 以上的环境执行

pip install httpx

最佳实践

俗话说得好,效率决定成败。我分别使用了 httpx 异步 和 同步 的方式对批量 http 请求进行了耗时比较,来一起看看结果吧~首先来看看同步 http 请求的耗时表现:


import asyncioimport httpximport threadingimport time
def sync_main(url, sign):    response = httpx.get(url).status_code    print(f'sync_main: {threading.current_thread()}: {sign}2 + 1{response}')
sync_start = time.time()[sync_main(url='http://www.baidu.com', sign=i) for i in range(200)]sync_end = time.time()print(sync_end - sync_start)

代码比较简单,可以看到在 sync_main 中则实现了同步 http 访问百度 200 次。运行后输出如下(截取了部分关键输出...):

sync_main: <_MainThread(MainThread, started 4471512512)>: 192: 200sync_main: <_MainThread(MainThread, started 4471512512)>: 193: 200sync_main: <_MainThread(MainThread, started 4471512512)>: 194: 200sync_main: <_MainThread(MainThread, started 4471512512)>: 195: 200sync_main: <_MainThread(MainThread, started 4471512512)>: 196: 200sync_main: <_MainThread(MainThread, started 4471512512)>: 197: 200sync_main: <_MainThread(MainThread, started 4471512512)>: 198: 200sync_main: <_MainThread(MainThread, started 4471512512)>: 199: 20016.56578803062439

可以看到在上面的输出中, 主线程没有进行切换(因为本来就是单线程啊喂!)请求按照顺序执行(因为是同步请求)。程序运行共耗时 16.6 秒下面我们试试 "异步" http 请求:

import asyncioimport httpximport threadingimport time
client = httpx.AsyncClient()
async def async_main(url, sign):    response = await client.get(url)    status_code = response.status_code    print(f'async_main: {threading.current_thread()}: {sign}:{status_code}')
loop = asyncio.get_event_loop()tasks = [async_main(url='http://www.baidu.com', sign=i) for i in range(200)]async_start = time.time()loop.run_until_complete(asyncio.wait(tasks))async_end = time.time()loop.close()print(async_end - async_start)

上述代码在 async_main 中用 async await 关键字实现了"异步" http,通过 asyncio ( 异步 io 库请求百度首页 200 次并打印出了耗时。运行代码后可以看到如下输出(截取了部分关键输出...)

async_main: <_MainThread(MainThread, started 4471512512)>: 56: 200async_main: <_MainThread(MainThread, started 4471512512)>: 99: 200async_main: <_MainThread(MainThread, started 4471512512)>: 67: 200async_main: <_MainThread(MainThread, started 4471512512)>: 93: 200async_main: <_MainThread(MainThread, started 4471512512)>: 125: 200async_main: <_MainThread(MainThread, started 4471512512)>: 193: 200async_main: <_MainThread(MainThread, started 4471512512)>: 100: 2004.518340110778809

可以看到顺序虽然是乱的(56,99,67...) (这是因为程序在协程间不停切换) 但是主线程并没有切换 (协程本质还是单线程 )。程序共耗时 4.5 秒比起同步请求耗时的 16.6 秒 缩短了接近 73 %!俗话说得好,一步快,步步快。 在耗时方面,"异步" http 确实比同步 http 快了很多。当然,"协程" 不仅仅能在请求效率方面赋能接口测试, 掌握 "协程"后,相信小伙伴们的技术水平也能提升一个台阶,从而设计出更优秀的测试框架。

相关文章
|
6天前
|
数据采集 存储 XML
Python爬虫定义入门知识
Python爬虫是用于自动化抓取互联网数据的程序。其基本概念包括爬虫、请求、响应和解析。常用库有Requests、BeautifulSoup、Scrapy和Selenium。工作流程包括发送请求、接收响应、解析数据和存储数据。注意事项包括遵守Robots协议、避免过度请求、处理异常和确保数据合法性。Python爬虫强大而灵活,但使用时需遵守法律法规。
|
7天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
8天前
|
数据采集 Web App开发 监控
高效爬取B站评论:Python爬虫的最佳实践
高效爬取B站评论:Python爬虫的最佳实践
|
13天前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
9天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
26 4
|
9天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
20 2
|
9天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
8天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
JSON 测试技术 数据格式
python接口自动化测试 - requests库的post请求进行文件上传
python接口自动化测试 - requests库的post请求进行文件上传
818 0
python接口自动化测试 - requests库的post请求进行文件上传
|
JSON 测试技术 网络安全
python接口自动化测试 - requests库的基础使用
python接口自动化测试 - requests库的基础使用
123 0
python接口自动化测试 - requests库的基础使用