一行代码,我优化掉了1G内存占用

简介: 这里一行代码,指的是:String.intern()的调用,为了调用这一行代码,也写了几十行额外的代码。

背景

我们有一个项目,采用了全内存缓存机制。一方面是为了追求卓越的RT,另一方面是数据量确实很小,标准的4C8G容器处理起来绰绰有余。可是突然有一天,预发环境,疯狂报警FullGC,定位了一下原因,原来是这个缓存变得太大了。


正文

我们通常会把数据量级在百条左右的配置项加载到内存里,近期一个新需求,导致配置数据量膨胀到了十万级,一口气加载到了内存里,自然造成了内存占用的上涨。但是,经过分析,这些数据的信息熵并不是很高。大面积的json其实是在存储有限种排列组合的字符串,但是这些字符串被反序列化框架以 new String 的方式重复加载到了堆空间内。

突然想到了常量池这个概念,打算把它用起来,这样在不改变本次设计的情况下,可以无业务入侵地解决这个问题。首先明确,我们使用的fastjson序列化工具,是不会对“value”做常量池处理的。这也很好理解,因为正常情况下,value代表着无限可能,把每一个扑面而来的字符串都放到常量池内,显然会对系统带来更糟糕的影响。不过,我们很清楚自己的业务场景,特定value是有限的,不需要被Young GC的,因此,我们需要把这些特定的“value”,常量化,即显式调用 String.intern() 方法。


说干就干,我们找到可以用来写 String.intern() 的“切点”。


fastjson会使用恰当的 ObjectDeserializer 来反序列化一个字段,同时 @JSONField(deserializeUsing = xxx.class) 注解也给了我们自定义反序列化器的空间。因此,我们打算自定义一个反序列化器,来调用 intern 方法。


public class StringPoolDeserializer implements ObjectDeserializer {

    @SuppressWarnings("unchecked")
    @Override
    public <T> T deserialze(DefaultJSONParser parser, Type type, Object o) {

        if (!type.equals(String.class)) {
            throw new JSONException("StringPoolDeserializer can only deserialize String");
        }

        return (T) ((String) parser.parse(o)).intern();
    }

    @Override
    public int getFastMatchToken() {
        return 0;
    }
}

经此优化,已经干掉了800M堆内存,并且元空间几乎没有上涨,毕竟我们的数据信息熵很低,都是重复的。

image.png

不过,剩余大小还是大于预期,后来发现,这个做法无法处理Map<String, String>类型的成员里面的value。


进一步,再看一下Map是如何被处理的。fastjson内部实现了 MapDeserializer 用来反序列化类型为Map的字段。不过这个反序列化器实现比较复杂,核心机制所在方法都被final修饰,不适合使用继承重写替换的方式解决问题。后来,发现代码里存在一条唯一的value。


map的通路,我们可以通过干预map的类型,*重写对应的put方法,从而找到合适的 String.intern() 调用点。


*p.s. 除put方法外,Map的 putAll, “compute家族”,甚至有参构造方法等,也有向Map添加元素的能力,他们并不复用put方法,而是复用一个被final关键字修饰的方法  ( putVal )。严格来说,由于无法重写 putVal方法,这些方法也应该被相应地重写,但考虑到  MapDeserializer 只调用了put方法,其余方法实现更复杂,故此只重写了put方法。

image.png

我的对策,直接重写put方法,简单粗暴。并且把这个StringPoolMap替换原来的JavaBean成员的HashMap类型声明:


public class StringPoolMap extends HashMap<String, String> {

    @Override
    public String put(String key, String value) {
        
        if (key != null) {
            key = key.intern();
        }
        
        if (value != null) {
            value = value.intern();
        }
        
        return super.put(key, value);
    }
}

至此,能通过trick优化的地方已经全被优化掉了,内存占用从800M干到了619M,相较最初的1.6G+,成功干掉了1G的空间。



写在最后

这个问题的本质,其实不是一个 String.intern() 的问题,而是低信息熵没有被很好地压缩。二期迭代,会从数据结构的设计上,重新思考并解决这个问题。


本次优化,就当是把“八股”简单地在生产环境中实战一下,顺便读了读fastjson的源码,收获良多。



多写一点,String.intern()的实现

收获了入职以来最多的一次ATA上和大家的互动,受宠若惊,正好最近在读jdk(openjdk)源码,顺便展开一下吧。


String.intern()实际上是一个native方法,表示的是:


尝试把this放进一个池子里,如果里面内容相等的东西已经存在了,则返回那个已经存在的地址。

如果里面的东西不存在,则放进去,并返回新的地址。


找一下对应的源码:

String.intern()对应的C源码


#include "jvm.h"
#include "java_lang_String.h"

JNIEXPORT jobject JNICALL
Java_java_lang_String_intern(JNIEnv *env, jobject this)
{
    return JVM_InternString(env, this);
}

里面实际上调用了一个 JVM_InternString,把this这个Object传了进去。JVM_InternString


#include "jvm.h"
#include "java_lang_String.h"

JNIEXPORT jobject JNICALL
Java_java_lang_String_intern(JNIEnv *env, jobject this)
{
    return JVM_InternString(env, this);
}

StringTable


oop StringTable::intern(Handle string_or_null_h, const jchar* name, int len, TRAPS) {
  
  unsigned int hash = java_lang_String::hash_code(name, len);

  // 分别在shared table 和local table中查找有无存在的string
  // 找到则快速返回
  
  oop found_string = lookup_shared(name, len, hash);
  if (found_string != nullptr) {
    return found_string;
  }
  if (_alt_hash) {
    hash = hash_string(name, len, true);
  }
  found_string = do_lookup(name, len, hash);
  if (found_string != nullptr) {
    return found_string;
  }

  // 没有找到的话,则创建并塞入
  return do_intern(string_or_null_h, name, len, hash, THREAD);
}


来源  |  阿里云开发者公众号

作者  |  金尚衡

相关文章
|
2月前
|
机器学习/深度学习 算法 PyTorch
125_训练加速:FlashAttention集成 - 推导注意力优化的独特内存节省
2025年,大型语言模型的训练面临着前所未有的挑战。随着模型参数量和序列长度的不断增加,传统注意力机制的内存瓶颈问题日益突出。FlashAttention作为一种突破性的注意力算法,通过创新的内存访问模式和计算优化,显著提升了训练效率和内存利用。
|
3月前
|
安全 Java 应用服务中间件
Spring Boot + Java 21:内存减少 60%,启动速度提高 30% — 零代码
通过调整三个JVM和Spring Boot配置开关,无需重写代码即可显著优化Java应用性能:内存减少60%,启动速度提升30%。适用于所有在JVM上运行API的生产团队,低成本实现高效能。
291 3
|
2月前
|
存储 机器学习/深度学习 PyTorch
119_LLM训练的高效内存管理与优化技术:从ZeRO到Flash Attention
大型语言模型(LLM)的训练面临着前所未有的计算和内存挑战。随着模型规模达到数百亿甚至数千亿参数,高效的内存管理成为训练成功的关键因素之一。2025年,LLM训练的内存优化技术已经取得了显著进展,从ZeRO优化器到Flash Attention等创新技术,为训练超大规模模型提供了可能。
|
5月前
|
缓存 固态存储 Windows
如何让内存发挥到最大效能?全面优化指南,提升电脑运行体验
电脑内存使用不合理会导致卡顿,本文教你如何优化内存性能。检查内存容量与主板支持上限,考虑升级或调整配置;关闭后台程序、管理浏览器标签、结束异常进程以释放内存;设置虚拟内存、调整视觉效果、定期重启提升效率;必要时增加内存条、选择高频内存、更换固态硬盘。避免盲目清理内存和依赖大内存忽视其他硬件瓶颈。只需合理设置,无需额外花钱,就能显著提升电脑速度。
|
3月前
|
存储 大数据 Unix
Python生成器 vs 迭代器:从内存到代码的深度解析
在Python中,处理大数据或无限序列时,迭代器与生成器可避免内存溢出。迭代器通过`__iter__`和`__next__`手动实现,控制灵活;生成器用`yield`自动实现,代码简洁、内存高效。生成器适合大文件读取、惰性计算等场景,是性能优化的关键工具。
240 2
|
5月前
|
存储 人工智能 自然语言处理
AI代理内存消耗过大?9种优化策略对比分析
在AI代理系统中,多代理协作虽能提升整体准确性,但真正决定性能的关键因素之一是**内存管理**。随着对话深度和长度的增加,内存消耗呈指数级增长,主要源于历史上下文、工具调用记录、数据库查询结果等组件的持续积累。本文深入探讨了从基础到高级的九种内存优化技术,涵盖顺序存储、滑动窗口、摘要型内存、基于检索的系统、内存增强变换器、分层优化、图形化记忆网络、压缩整合策略以及类操作系统内存管理。通过统一框架下的代码实现与性能评估,分析了每种技术的适用场景与局限性,为构建高效、可扩展的AI代理系统提供了系统性的优化路径和技术参考。
258 4
AI代理内存消耗过大?9种优化策略对比分析
|
8月前
|
缓存 并行计算 PyTorch
PyTorch CUDA内存管理优化:深度理解GPU资源分配与缓存机制
本文深入探讨了PyTorch中GPU内存管理的核心机制,特别是CUDA缓存分配器的作用与优化策略。文章分析了常见的“CUDA out of memory”问题及其成因,并通过实际案例(如Llama 1B模型训练)展示了内存分配模式。PyTorch的缓存分配器通过内存池化、延迟释放和碎片化优化等技术,显著提升了内存使用效率,减少了系统调用开销。此外,文章还介绍了高级优化方法,包括混合精度训练、梯度检查点技术及自定义内存分配器配置。这些策略有助于开发者在有限硬件资源下实现更高性能的深度学习模型训练与推理。
1491 0
|
5月前
|
存储 人工智能 API
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
在AI代理系统开发中,上下文工程成为提升系统性能的关键技术。本文探讨了从提示工程到上下文工程的转变,强调其通过为AI系统提供背景信息和工具支持,显著提升智能化程度和实用价值。文章系统分析了上下文工程的理论基础、核心策略(如写入、选择、压缩和隔离),并结合LangChain和LangGraph工具,展示了如何实现上下文工程技术以优化AI代理性能。通过Scratchpad机制、内存管理、RAG系统集成、多代理架构及沙盒环境等技术手段,开发者可以更高效地构建高性能、可扩展的AI系统。
511 0
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
|
6月前
|
缓存 监控 Cloud Native
Java Solon v3.2.0 高并发与低内存实战指南之解决方案优化
本文深入解析了Java Solon v3.2.0框架的实战应用,聚焦高并发与低内存消耗场景。通过响应式编程、云原生支持、内存优化等特性,结合API网关、数据库操作及分布式缓存实例,展示其在秒杀系统中的性能优势。文章还提供了Docker部署、监控方案及实际效果数据,助力开发者构建高效稳定的应用系统。代码示例详尽,适合希望提升系统性能的Java开发者参考。
288 4
Java Solon v3.2.0 高并发与低内存实战指南之解决方案优化
|
4月前
|
边缘计算 算法 Java
Java 绿色计算与性能优化:从内存管理到能耗降低的全方位优化策略与实践技巧
本文探讨了Java绿色计算与性能优化的技术方案和应用实例。文章从JVM调优(包括垃圾回收器选择、内存管理和并发优化)、代码优化(数据结构选择、对象创建和I/O操作优化)等方面提出优化策略,并结合电商平台、社交平台和智能工厂的实际案例,展示了通过Java新特性提升性能、降低能耗的显著效果。最终指出,综合运用这些优化方法不仅能提高系统性能,还能实现绿色计算目标,为企业节省成本并符合环保要求。
156 0

热门文章

最新文章