一文带你看懂Python数据分析利器——Pandas的前世今生

简介: 一文带你看懂Python数据分析利器——Pandas的前世今生

一、Python生态里的Pandas

五月份TIOBE编程语言排行榜,Python追上Java又回到第二的位置。Python如此受欢迎一方面得益于它崇尚简洁的编程哲学,另一方面是因为强大的第三方库生态。

要说杀手级的库,很难排出个先后顺序,因为python的明星库非常多,在各个领域都算得上出类拔萃。

比如web框架-Django、深度学习框架-TensorFlow、自然语言处理框架-NLTK、图像处理库-PIL、爬虫库-requests、图形界面框架-PyQt、可视化库-Matplotlib、科学计算库-Numpy、数据分析库-Pandas......

上面大部分库我都用过,用的最多也最顺手的是Pandas,可以说这是一个生态上最完整、功能上最强大、体验上最便捷的数据分析库,称为编程界的Excel也不为过。

Pandas在Python数据科学链条中起着关键作用,处理数据十分方便,且连接Python与其它核心库。

二、十项全能的Pandas

Pandas诞生于2008年,它的开发者是Wes McKinney,一个量化金融分析工程师。

因为疲于应付繁杂的财务数据,Wes McKinney便自学Python,并开发了Pandas。

大神就是这么任性,没有,就创造。

为什么叫作Pandas,其实这是“Python data analysis”的简写,同时也衍生自计量经济学术语“panel data”(面板数据)。

所以说Pandas的诞生是为了分析金融财务数据,当然现在它已经应用在各个领域了。

2008: Pandas正式开发并发布

2009:Pandas成为开源项目

2012: 《利用Python进行数据分析》出版

2015: Pandas 成为 NumFOCUS 赞助的项目

Pandas能做什么呢?

它可以帮助你任意探索数据,对数据进行读取、导入、导出、连接、合并、分组、插入、拆分、透视、索引、切分、转换等,以及可视化展示、复杂统计、数据库交互、web爬取等。

同时Pandas还可以使用复杂的自定义函数处理数据,并与numpy、matplotlib、sklearn、pyspark、sklearn等众多科学计算库交互。

Pandas有一个伟大的目标,即成为任何语言中可用的最强大、最灵活的开源数据分析工具。

让我们期待下。

三、Pandas核心语法

1.  数据类型

Pandas的基本数据类型是dataframe和series两种,也就是行和列的形式,dataframe是多行多列,series是单列多行。

如果在jupyter notebook里面使用pandas,那么数据展示的形式像excel表一样,有行字段和列字段,还有值。

2. 读取数据

pandas支持读取和输出多种数据类型,包括但不限于csv、txt、xlsx、json、html、sql、parquet、sas、spss、stata、hdf5

读取一般通过read_*函数实现,输出通过to_*函数实现。

image image

3. 选择数据子集

导入数据后,一般要对数据进行清洗,我们会选择部分数据使用,也就是子集。

在pandas中选择数据子集非常简单,通过筛选行和列字段的值实现。

具体实现如下:

4. 数据可视化

不要以为pandas只是个数据处理工具,它还可以帮助你做可视化图表,而且能高度集成matplotlib。

你可以用pandas的plot方法绘制散点图、柱状图、折线图等各种主流图表。

5. 创建新列

有时需要通过函数转化旧列创建一个新的字段列,pandas也能轻而易举的实现

image

6. 分组计算

在sql中会用到group by这个方法,用来对某个或多个列进行分组,计算其他列的统计值。

pandas也有这样的功能,而且和sql的用法类似。

image

7. 数据合并

数据处理中经常会遇到将多个表合并成一个表的情况,很多人会打开多个excel表,然后手动复制粘贴,这样就很低效。

pandas提供了merge、join、concat等方法用来合并或连接多张表。

小结

pandas还有数以千计的强大函数,能实现各种骚操作。

python也还有数不胜数的宝藏库,等着大家去探索

相关文章
|
21天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
49 3
|
28天前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
26天前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
1月前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
1月前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
1月前
|
数据采集 数据可视化 数据处理
Python数据科学:Pandas库入门与实践
Python数据科学:Pandas库入门与实践
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力
下一篇
DataWorks