XGBoost中正则化的9个超参数

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 本文探讨了XGBoost中多种正则化方法及其重要性,旨在通过防止过拟合来提升模型性能。文章首先强调了XGBoost作为一种高效算法在机器学习任务中的应用价值,并指出正则化对于缓解过拟合问题的关键作用,具体包括降低模型复杂度、改善泛化能力和防止模型过度适应训练数据。随后,文章详细介绍了四种正则化方法:减少估计器数量(如使用`early_stopping_rounds`)、使用更简单的树(如调整`gamma`和`max_depth`)、采样(如设置`subsample`和`colsample`)以及收缩(如调节`learning_rate`, `lambda`和`alpha`)。

正则化是一种强大的技术,通过防止过拟合来提高模型性能。本文将探索各种XGBoost中的正则化方法及其优势。

为什么正则化在XGBoost中很重要?

XGBoost是一种以其在各种机器学习任务中的效率和性能而闻名的强大算法。像任何其他复杂模型一样,它可能会过拟合,特别是在处理噪声数据或过多特征时。XGBoost中的正则化有助于通过以下方式缓解这一问题:

  1. 降低模型复杂度: 通过惩罚较大的系数,正则化简化了模型。
  2. 改善泛化能力: 确保模型在新数据上表现良好。
  3. 防止过拟合: 防止模型过度适应训练数据。

下面我们介绍在XGBoost中实现正则化的方法

1. 减少估计器的数量

减少估计器的数量可以防止模型变得过于复杂。两个关键超超参数包括:

n_estimators: 设置较低的树的数量可以帮助防止模型学习训练数据中的噪声。n_estimators的高值会导致过拟合,而低值可能导致欠拟合。

early_stopping_rounds: 这种技术在验证集上的性能停止改善时停止训练过程,防止过拟合。

上图为没有早停的模型指标

上面的模型中,即使损失不再下降,训练也会继续。相比之下,使用

early_stopping_rounds=10

,当连续10轮损失没有改善时,训练就会停止。

 # 初始化带有早停的XGBoost回归器
 model=xgb.XGBRegressor(n_estimators=1000, learning_rate=0.1, max_depth=5)

 # 使用早停训练模型
 model.fit(X_train, y_train, 
           eval_set=[(X_test, y_test)], 
           early_stopping_rounds=10, 
           verbose=True)

使用early_stopping_rounds=10的模型指标

2. 使用更简单的树

简化每棵树的结构也可以帮助正则化模型。关键参数包括:

gamma: 在叶节点上进行进一步分区所需的最小损失减少。较高的值会导致更保守的模型。

下面是XGBoost的目标函数。如果增加gamma,叶节点的数量(T)就会减少。gamma惩罚T并帮助防止树变得过于复杂。

Gamma是一个后剪枝参数。以下复杂公式表示在每次分裂时计算的增益。第一、第二和第三项分别是左子节点、右子节点和父节点的相似度分数。Gamma(最后一项)是增益的阈值。

在下面的例子中,每个节点内的值代表不包含gamma项的增益。当gamma设置为400时,最底部的分支被删除,因为它不满足阈值标准,这样树就变得更简单了。

那么问题来了:gamma的最佳值是多少?答案在于超参数调优。

 # 获取树的详细转储,包括统计信息
 tree_dump=model.get_booster().get_dump(dump_format='text', with_stats=True)

 # 打印树的转储以查看详细信息,包括每个节点的增益
 fortreeintree_dump:
     print(tree)

上面的代码将显示所有决策树的转储。通过观察所有节点的增益,我们可以尝试不同的gamma值。

 importxgboostasxgb
 # Gamma的实现
 model=xgb.XGBRegressor(n_estimators=3, random_state=42, gamma=25000)

但是有一点,gamma值过高会导致欠拟合,因为它减少了树的深度,而gamma值过低会导致过拟合。

max_depth: 限制树的最大深度。较低的值可以防止模型学习过于具体的模式。这是一个预剪枝参数。

思考题1:当我们有gamma时,为什么还需要max_depth?(答案在最后)

min_child_weight: 要解释这个参数就要先了解什么是cover。

当我们进行树转储时,我们会看到所有节点的cover值。Cover是hessians的总和,而hessian是损失函数相对于预测值的二阶导数。

我们以一个简单的损失为例,对于均方损失函数的回归问题,hessian的值为1。所以在这种情况下,cover基本上是每个节点中的数据点数量。因此min_child_weight是每个节点中应该存在的最小数据点数量。它对每个节点设置以下条件:

cover > min_child_weight

xgboost中回归问题的min_child_weight类似于决策树中的min_sample_split。

 importxgboostasxgb

 # min_child_weight的例子
 model=xgb.XGBRegressor(n_estimators=100, learning_rate=0.1, max_depth=5, min_child_weight=10, gamma=1, random_state=42)

对于分类问题,理解这一点有点棘手,但是简单来说分类中min_child_weight的一句话描述是:它为数据点的重要性设置了一个阈值。

所以我们只要记住min_child_weight是一个预剪枝参数。增加min_child_weight会减少过拟合。

3. 采样

采样涉及在数据的子集上训练模型,这可以通过引入随机性来减少过拟合。

subsample: 用于训练每棵树的训练数据的百分比。较低的值可以防止过拟合。子采样使每个决策树成为数据子集的专家,遵循"群众的智慧"原则。根据数据的不同,0.5到0.8的范围通常会给出良好的结果。

colsample: 用于训练每棵树的特征的百分比。这也可以用来引入随机性并防止过拟合。

colsample

有以下三种类型,它们的值范围从0到1。这些按引入随机性的增加顺序排列如下。假设我们的数据中有10个特征,所有这些超参数的值都设置为0.5:

  • colsample_bytree : 为每棵树随机选择5个特征,并根据这些特征进行分裂。
  • colsample_bylevel : 为每个级随机选择5个特征,并根据这些特征进行分裂。
  • colsample_bynode : 为每个节点随机选择5个特征,并根据这些特征进行分裂。
 importxgboostasxgb

 # subsample和colsample的例子
 model=xgb.XGBRegressor(n_estimators=100, subsample=0.8,
                        max_depth=5, colsample_bytree=0.5,
                        colsample_bylevel=0.5, colsample_bynode=0.5)

4. 收缩

收缩减少了每棵单独树的影响,使模型更加稳健:

learning_rate (收缩): 减少每棵树的影响。较低的值意味着模型构建更多的树,但不太可能过拟合。0.3是许多模型的合适学习率。

lambda和alpha: L2(岭)和L1(Lasso)正则化项,惩罚大系数。

当增益小于gamma时,该节点就会被剪枝。当lambda增加时,过拟合减少,欠拟合增加。Lambda与gamma一起用于正则化。

思考题2:当我们有gamma时,为什么还需要lambda?

 importxgboostasxgb
 # reg_lambda是lambda的超参数,reg_alpha是alpha的超参数
 model=xgb.XGBRegressor(n_estimators=3, learning_rate=0.3, reg_lambda=100, reg_alpha=100, gamma=10000)

思考题答案

1、XGBoost中即使有了gamma参数,我们仍然需要max_depth参数。

在XGBoost中,gamma和max_depth虽然都用于控制树的生长,但它们的工作方式和目的略有不同:

  1. gamma(最小分裂损失):- gamma是一个后剪枝参数。- 它控制节点分裂时所需的最小损失减少量。- 如果分裂导致的损失减少小于gamma,那么这个分裂就不会发生。- gamma更关注的是分裂的质量。
  2. max_depth(最大树深):- max_depth是一个预剪枝参数。- 它直接限制了树可以生长的最大深度。- 无论分裂的质量如何,一旦达到max_depth,树就会停止生长。- max_depth更关注的是树的整体结构。

为什么两者都需要:

  1. 不同的控制粒度:- gamma提供了一种基于性能的细粒度控制。- max_depth提供了一种简单直接的粗粒度控制。
  2. 计算效率:- 只使用gamma可能导致在某些情况下树过度生长,增加计算复杂度。- max_depth可以有效地限制计算资源的使用。
  3. 模型可解释性:- 过深的树可能难以解释,即使每次分裂都是有意义的。- max_depth可以保持树的结构相对简单。
  4. 处理不同类型的数据:- 对于某些数据集,基于gamma的剪枝可能不够,树仍然可能过度生长。- max_depth提供了一个绝对的上限。
  5. 互补作用:- 两个参数一起使用可以更灵活地控制模型的复杂度。- 它们共同作用,可以在模型性能和复杂度之间取得更好的平衡。

总之,gamma和max_depth在控制树的生长方面起着互补的作用。gamma关注分裂的质量,而max_depth确保树不会变得过于复杂。同时使用这两个参数,可以更好地平衡模型的性能、复杂度和可解释性。

2、为什么在XGBoost中即使有了gamma参数,我们仍然需要lambda参数。

在XGBoost中,gamma和lambda虽然都用于正则化,但它们的工作方式和目的是不同的:

  1. gamma(最小分裂损失):- gamma主要用于控制树的生长。- 它设置了节点分裂所需的最小损失减少量。- 如果分裂导致的损失减少小于gamma,那么这个分裂就不会发生。- gamma更关注的是树的结构和复杂度。
  2. lambda(L2正则化项):- lambda是应用于叶子权重的L2正则化项。- 它直接惩罚模型的权重。- lambda帮助防止模型对个别特征过度依赖。- 它可以使模型更加稳定和泛化能力更强。

为什么两者都需要:

  1. 不同的正则化目标:- gamma主要影响树的结构。- lambda主要影响叶子节点的权重。
  2. 模型复杂度的不同方面:- gamma通过限制树的生长来减少复杂度。- lambda通过缩小权重来减少复杂度。
  3. 处理不同类型的过拟合:- gamma可以防止模型学习训练数据中的噪声。- lambda可以防止模型对某些特征过度敏感。
  4. 互补作用:- 同时使用这两个参数可以更全面地控制模型的复杂度。- 它们一起工作可以在模型的结构和权重上都实现正则化。
  5. 灵活性:- 在某些情况下,你可能想要一个深度较大但权重较小的树,或者相反。- 有了这两个参数,你可以更灵活地调整模型以适应不同的数据集和问题。
  6. 收缩效果:- 如之前提到的,lambda还有一个额外的作用,就是对树的输出进行收缩。- 这种收缩效果可以进一步帮助防止过拟合,特别是在梯度提升的早期阶段。

gamma和lambda在XGBoost中起着互补的作用。gamma主要控制树的结构,而lambda主要控制叶子节点的权重和树的输出。同时使用这两个参数,可以更全面、更灵活地控制模型的复杂度,从而在不同层面上防止过拟合,提高模型的泛化能力。这种多层面的正则化策略是XGBoost强大性能的关键因素之一。

https://avoid.overfit.cn/post/07cefc6e54b84286a26120016327d478

作者:Daksh Rathi

目录
相关文章
|
7月前
|
机器学习/深度学习 算法
【机器学习】正则化 Regularization 过拟合欠拟合
【1月更文挑战第27天】【机器学习】正则化 Regularization 过拟合欠拟合
|
4月前
|
机器学习/深度学习 存储 数据可视化
2.8.4 加入正则化项,避免模型过拟合
这篇文章详细探讨了在深度学习中避免模型过拟合的方法,包括加入正则化项和使用暂退法(Dropout),并介绍了如何通过可视化工具如Matplotlib和VisualDL来分析模型训练过程,以便更好地理解和优化模型性能。
|
6月前
|
机器学习/深度学习 算法
GBDT算法超参数评估(一)
GBDT(Gradient Boosting Decision Tree)是一种强大的机器学习技术,用于分类和回归任务。超参数调整对于发挥GBDT性能至关重要。其中,`n_estimators`是一个关键参数,它决定了模型中弱学习器(通常是决策树)的数量。增加`n_estimators`可以提高模型的复杂度,提升预测精度,但也可能导致过拟合,并增加训练时间和资源需求。
|
6月前
|
机器学习/深度学习 算法
GBDT算法超参数评估(二)
GBDT算法超参数评估关注决策树的不纯度指标,如基尼系数和信息熵,两者衡量数据纯度,影响树的生长。默认使用基尼系数,计算快速,而信息熵更敏感但计算慢。GBDT的弱评估器默认最大深度为3,限制了过拟合,不同于随机森林。由于Boosting的内在机制,过拟合控制更多依赖数据和参数如`max_features`。相比Bagging,Boosting通常不易过拟合。评估模型常用`cross_validate`和`KFold`交叉验证。
|
7月前
|
数据可视化 Python
Python进行多输出(多因变量)回归:集成学习梯度提升决策树GRADIENT BOOSTING,GBR回归训练和预测可视化
Python进行多输出(多因变量)回归:集成学习梯度提升决策树GRADIENT BOOSTING,GBR回归训练和预测可视化
Python进行多输出(多因变量)回归:集成学习梯度提升决策树GRADIENT BOOSTING,GBR回归训练和预测可视化
|
机器学习/深度学习 传感器 算法
INFO-XGBOOST回归预测 | Matlab 向量加权优化xgboost(INFO-XGBOOST) 回归预测
INFO-XGBOOST回归预测 | Matlab 向量加权优化xgboost(INFO-XGBOOST) 回归预测
|
7月前
|
机器学习/深度学习 存储 算法
【视频】Lasso回归、岭回归等正则化回归数学原理及R语言实例(二)
【视频】Lasso回归、岭回归等正则化回归数学原理及R语言实例二)
|
7月前
|
机器学习/深度学习 并行计算 算法
【视频】Lasso回归、岭回归等正则化回归数学原理及R语言实例(一)
【视频】Lasso回归、岭回归等正则化回归数学原理及R语言实例(一)
|
7月前
|
机器学习/深度学习 算法 数据可视化
R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例
R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例
|
7月前
|
机器学习/深度学习 自然语言处理 算法
PyTorch实例:简单线性回归的训练和反向传播解析
PyTorch实例:简单线性回归的训练和反向传播解析
PyTorch实例:简单线性回归的训练和反向传播解析

相关实验场景

更多