【Python-Keras】keras.layers.Lambda解析与使用

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 【8月更文挑战第1天】keras.layers.Lambda解析与使用

1 作用

Lambda表达式: 用一行代码去表示一个函数,简化和美观代码。

keras.layers.Lambda(): 是Lambda表达式的应用。指定在神经网络模型中,如果某一层需要通过一个函数去变换数据,那利用keras.layers.Lambda()这个函数单独把这一步数据操作命为单独的一Lambda层。

2 参数解析

keras.layers.core.Lambda(function, output_shape=None, mask=None, arguments=None)

参数

  • function:要实现的函数,该函数仅接受一个变量,即神经网络上一层的输出

  • output_shape:函数应该返回的值的shape,可以是一个tuple,也可以是一个根据输入shape计算输出shape的函数

  • mask: 掩膜

  • arguments:可选,是字典格式,用来传参

3 举例

3.1 传参举例

arguments参数,利用字典格式来传参

# index是参数,
def slice(x,index):
    return x[:,:,index]

# 通过字典将参数index = 0传递进去
x1 = Lambda(slice,output_shape=(4,1),arguments={'index':0})(a)
# 通过字典将参数index = 1 传递进去
x2 = Lambda(slice,output_shape=(4,1),arguments={'index':1})(a)

3.2 简单Demo

from keras.layers import Lambda
from keras.models import Input, Model
import numpy as np

## 第一步 定义模型
# 初始化两个输入形参
a = Input(shape=(2, ))
b = Input(shape=(2, ))

# 定义lambda要执行的函数
def minus(inputs):
    x, y = inputs
    return (x+y)
# 使用lambda表达式,对函数进行传参
minus_layer = Lambda(minus, name='minus')([a, b])
model = Model(inputs=[a, b], outputs=[minus_layer])

## 第二步 测试模型
# 随便定义的两个数组
v0 = np.array([5, 2])
v1 = np.array([8, 4])
# 转成1*2的矩阵后测试模型
print(model.predict([v0.reshape(1, 2), v1.reshape(1, 2)]))

3.3 利用Lambda表达式实现某层数据的切片

Lambda传参数
参考文档:keras Lambda自定义层实现数据的切片,Lambda传参数

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation,Reshape
from keras.layers import merge
from keras.utils.visualize_util import plot
from keras.layers import Input, Lambda
from keras.models import Model

def slice(x,index):
        return x[:,:,index]

a = Input(shape=(4,2))
x1 = Lambda(slice,output_shape=(4,1),arguments={'index':0})(a)
x2 = Lambda(slice,output_shape=(4,1),arguments={'index':1})(a)
x1 = Reshape((4,1,1))(x1)
x2 = Reshape((4,1,1))(x2)
output = merge([x1,x2],mode='concat')
model = Model(a, output)
x_test = np.array([[[1,2],[2,3],[3,4],[4,5]]])
print model.predict(x_test)
plot(model, to_file='lambda.png',show_shapes=True)

上述代码实现的是,将矩阵的每一列提取出来,然后单独进行操作,最后在拼在一起。可视化的图如下所示。

1.png

相关文章
|
27天前
|
数据采集 JSON API
深入解析:使用 Python 爬虫获取淘宝店铺所有商品接口
本文介绍如何使用Python结合淘宝开放平台API获取指定店铺所有商品数据。首先需注册淘宝开放平台账号、创建应用并获取API密钥,申请接口权限。接着,通过构建请求、生成签名、调用接口(如`taobao.items.search`和`taobao.item.get`)及处理响应,实现数据抓取。代码示例展示了分页处理和错误处理方法,并强调了调用频率限制、数据安全等注意事项。此技能对开发者和数据分析师极具价值。
|
2月前
|
存储 索引 Python
Python入门:6.深入解析Python中的序列
在 Python 中,**序列**是一种有序的数据结构,广泛应用于数据存储、操作和处理。序列的一个显著特点是支持通过**索引**访问数据。常见的序列类型包括字符串(`str`)、列表(`list`)和元组(`tuple`)。这些序列各有特点,既可以存储简单的字符,也可以存储复杂的对象。 为了帮助初学者掌握 Python 中的序列操作,本文将围绕**字符串**、**列表**和**元组**这三种序列类型,详细介绍其定义、常用方法和具体示例。
Python入门:6.深入解析Python中的序列
|
2月前
|
存储 Linux iOS开发
Python入门:2.注释与变量的全面解析
在学习Python编程的过程中,注释和变量是必须掌握的两个基础概念。注释帮助我们理解代码的意图,而变量则是用于存储和操作数据的核心工具。熟练掌握这两者,不仅能提高代码的可读性和维护性,还能为后续学习复杂编程概念打下坚实的基础。
Python入门:2.注释与变量的全面解析
|
2月前
|
存储 人工智能 程序员
通义灵码AI程序员实战:从零构建Python记账本应用的开发全解析
本文通过开发Python记账本应用的真实案例,展示通义灵码AI程序员2.0的代码生成能力。从需求分析到功能实现、界面升级及测试覆盖,AI程序员展现了需求转化、技术选型、测试驱动和代码可维护性等核心价值。文中详细解析了如何使用Python标准库和tkinter库实现命令行及图形化界面,并生成单元测试用例,确保应用的稳定性和可维护性。尽管AI工具显著提升开发效率,但用户仍需具备编程基础以进行调试和优化。
277 9
|
20天前
|
机器学习/深度学习 数据采集 自然语言处理
基于Python的情感分析与情绪识别技术深度解析
本文探讨了基于Python的情感分析与情绪识别技术,涵盖基础概念、实现方法及工业应用。文中区分了情感分析与情绪识别的核心差异,阐述了从词典法到深度学习的技术演进,并通过具体代码展示了Transformers架构在细粒度情感分析中的应用,以及多模态情绪识别框架的设计。此外,还介绍了电商评论分析系统的构建与优化策略,包括领域自适应训练和集成学习等方法。未来,随着深度学习和多模态数据的发展,该技术将更加智能与精准。
53 0
|
2月前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
53 10
|
3月前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
66 17
|
3月前
|
运维 Shell 数据库
Python执行Shell命令并获取结果:深入解析与实战
通过以上内容,开发者可以在实际项目中灵活应用Python执行Shell命令,实现各种自动化任务,提高开发和运维效率。
93 20
|
2月前
|
存储 数据采集 JSON
Python爬取某云热歌榜:解析动态加载的歌曲数据
Python爬取某云热歌榜:解析动态加载的歌曲数据
|
3月前
|
数据采集 供应链 API
Python爬虫与1688图片搜索API接口:深度解析与显著收益
在电子商务领域,数据是驱动业务决策的核心。阿里巴巴旗下的1688平台作为全球领先的B2B市场,提供了丰富的API接口,特别是图片搜索API(`item_search_img`),允许开发者通过上传图片搜索相似商品。本文介绍如何结合Python爬虫技术高效利用该接口,提升搜索效率和用户体验,助力企业实现自动化商品搜索、库存管理优化、竞品监控与定价策略调整等,显著提高运营效率和市场竞争力。
148 3