【YOLOv10改进-损失函数】Shape-IoU:考虑边框形状与尺度的指标

简介: YOLO目标检测专栏探讨了边框回归损失的创新方法,强调了目标形状和尺度对结果的影响。提出的新方法Shape-IoU关注边框自身属性,通过聚焦形状和尺度提高回归精度。实验显示,该方法提升了检测效果,超越现有技术,在多个任务中达到SOTA。论文和代码已公开。

YOLOv10目标检测创新改进与实战案例专栏

专栏链接: YOLOv10 创新改进有效涨点

介绍

image-20240130102437884

摘要

​ 作为检测器定位分支的重要组成,边框回归损失在目标检测任务中发挥巨大作用。现有的边框回归方法,通常考虑了GT框与预测框之间的几何关系,通过使用边框间的相对位置与相对形状等计算损失,而忽略了边框其自身的形状与尺度等固有属性对边框回归的影响。为了弥补现有研究的不足,本文提出聚焦边框自身形状与尺度的边框回归方法。首先我们对边框回归特性进行分析,得出边框自身形状因素与尺度因素会对回归结果产生影响。接着基于以上结论我们,我们提出了Shape-IoU方法,其能够通过聚焦边框自身形状与自身尺度计算损失,从而使得边框回归更为精确。最后我们通过大量的对比实验来验证本文方法,实验结果表明本文方法能够有效提升检测效果且优于现有方法,在不同的检测任务中达到了sota.

创新点

  1. 本研究对边界框回归的特性进行了深入分析,并得出结论:在边界框回归过程中,回归样本的形状与尺度因素对回归结果有显著影响。

  2. 基于对现有边界框回归损失函数的考量,特别是考虑到回归样本自身形状与尺度对边界框回归的影响,提出了Shape-IoU损失函数。对于小目标检测任务,进一步提出了Shape-Dot-Distance和Shape-NWD损失函数。

  3. 采用当前最先进的单阶段检测器,在不同的检测任务上进行了一系列比较实验。实验结果证实,该方法在检测效果上优于现有方法,并达到了行业领先水平(State of the Art,SOTA)。

方法

1.边框回归特性分析

如图所示,图a与图b中,边框回归样本A与B的基准框(GT框)尺度相同,样本C与D的基准框尺度亦相同。样本A与D的基准框形状相同,样本B与C的基准框形状相同。样本C与D的边框尺度大于样本A与B。在图a中,所有边框回归样本的偏移量(deviation)相同,形状偏移量(shape-deviation)为0。图b中,所有边框回归样本的形状偏移量相同,偏移量为0。观察结果如下:

- 图a中,样本A与B的偏移量相同,但它们的IoU值存在差异。
- 图a中,样本C与D的偏移量相同,但它们的IoU值存在差异,且与样本A与B相比,其IoU值差异较小。
- 图b中,样本A与B的形状偏移量相同,但它们的IoU值存在差异。
- 图b中,样本C与D的形状偏移量相同,但它们的IoU值存在差异,且与样本A与B相比,IoU值差异较小。

分析图a中样本A与B的IoU值差异可知,由于GT框形状不同(即长边和短边方向的偏差),对IoU值的影响各异。对于小尺度边框,其IoU值变化更敏感,GT框形状对IoU值的影响更显著。此外,图b中从形状偏移量角度分析边框回归,发现回归样本的GT框形状在回归过程中影响其IoU值。

基于以上分析,可以得出以下结论:

  • (1)在非正方形GT框中,即存在长边与短边的情况下,假设偏移量与形状偏移量均不为0,边框形状与尺度的差异会导致IoU值存在显著差异。
  • (2)在相同尺度的边框回归样本中,当偏移量与形状偏移量均不为0时,边框形状会显著影响IoU值,特别是沿边框短边方向的偏移。
  • (3)在形状相同的边框回归样本中,相较于大尺度样本,小尺度样本的IoU值更易受GT框形状影响。

2.Shape-IoU

其中,scale为尺度因子,与数据集中目标的尺度相关;ww与hh分别为水平方向与竖直方向的权重系数,与GT框的形状相关。对应的边框回归损失函数如下:

文章链接

论文地址:论文地址

代码地址:代码地址

原文作者CSDN : https://blog.csdn.net/qq_45911380/article/details/135330376

视频讲解

yolov8引入代码

def shape_iou(box1, box2, xywh=True, scale=0, eps=1e-7):
    (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
    w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
    b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
    b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_

    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps

    # IoU
    iou = inter / union

    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance  
    ww = 2 * torch.pow(w2, scale) / (torch.pow(w2, scale) + torch.pow(h2, scale))
    hh = 2 * torch.pow(h2, scale) / (torch.pow(w2, scale) + torch.pow(h2, scale))
    cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex width
    ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
    c2 = cw ** 2 + ch ** 2 + eps                            # convex diagonal squared
    center_distance_x = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2) / 4
    center_distance_y = ((b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4
    center_distance = hh * center_distance_x + ww * center_distance_y
    distance = center_distance / c2

    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    
    omiga_w = hh * torch.abs(w1 - w2) / torch.max(w1, w2)
    omiga_h = ww * torch.abs(h1 - h2) / torch.max(h1, h2)
    shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)

    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU
    iou = iou - distance - 0.5 * ( shape_cost)
    return iou  # IoU

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/140185105

相关文章
|
7月前
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
YOLOv5改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
1682 0
|
机器学习/深度学习
使用LSTM预测结果为一条直线原因总结
使用LSTM预测结果为一条直线原因总结
3385 0
使用LSTM预测结果为一条直线原因总结
|
2月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
313 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
7月前
|
机器学习/深度学习
YOLOv5改进 | 损失函数篇 | 更加聚焦的边界框损失Focaler-IoU | 二次创新Inner-FocalerIoU
YOLOv5改进 | 损失函数篇 | 更加聚焦的边界框损失Focaler-IoU | 二次创新Inner-FocalerIoU
633 2
|
7月前
|
计算机视觉
【YOLOv8改进】Shape-IoU:考虑边框形状与尺度的指标(论文笔记+引入代码)
YOLO目标检测专栏探讨了边框回归损失的创新方法,强调了目标形状和尺度对结果的影响。提出的新方法Shape-IoU关注边框自身属性,通过聚焦形状和尺度提高回归精度。实验显示,该方法提升了检测效果,超越现有技术,在多个任务中达到SOTA。论文和代码已公开。
|
7月前
|
计算机视觉
【YOLOv8改进】Inner-IoU: 基于辅助边框的IoU损失(论文笔记+引入代码)
YOLO目标检测专栏探讨了IoU损失的局限性,并提出创新改进。分析发现,不同尺度的辅助边框对高IoU和低IoU样本的回归有不同影响。因此,提出了Inner-IoU Loss,利用尺度因子ratio控制辅助边框大小以优化损失计算。实验验证了该方法能提升检测效果,增强泛化能力。创新点包括根据样本特性选择辅助边框尺度和Inner-IoU Loss的设计。更多详情见YOLO目标检测创新改进与实战案例专栏。
|
7月前
|
编解码 计算机视觉
YOLOv8改进 | Conv篇 | 2024.1月最新成果可变形卷积DCNv4(适用检测、Seg、分类、Pose、OBB)
YOLOv8改进 | Conv篇 | 2024.1月最新成果可变形卷积DCNv4(适用检测、Seg、分类、Pose、OBB)
1054 0
|
机器学习/深度学习 人工智能 资源调度
深度学习应用篇-计算机视觉-目标检测[4]:综述、边界框bounding box、锚框(Anchor box)、交并比、非极大值抑制NMS、SoftNMS
深度学习应用篇-计算机视觉-目标检测[4]:综述、边界框bounding box、锚框(Anchor box)、交并比、非极大值抑制NMS、SoftNMS
深度学习应用篇-计算机视觉-目标检测[4]:综述、边界框bounding box、锚框(Anchor box)、交并比、非极大值抑制NMS、SoftNMS
|
算法 数据挖掘 计算机视觉
目标检测中 Anchor 与 Loss 计算
目标检测中 Anchor 与 Loss 计算
195 0
|
机器学习/深度学习 算法 计算机视觉
YOLO涨点Trick | 超越CIOU/SIOU,Wise-IOU让Yolov7再涨1.5个点!
YOLO涨点Trick | 超越CIOU/SIOU,Wise-IOU让Yolov7再涨1.5个点!
4808 1
YOLO涨点Trick | 超越CIOU/SIOU,Wise-IOU让Yolov7再涨1.5个点!
下一篇
DataWorks