【干货】python多进程和多线程谁更快

简介: 【干货】python多进程和多线程谁更快

python多进程和多线程谁更快

  • python3.6
  • threading和multiprocessing

自从用多进程和多线程进行编程,一致没搞懂到底谁更快。网上很多都说python多进程更快,因为GIL(全局解释器锁)。但是我在写代码的时候,测试时间却是多线程更快,所以这到底是怎么回事?最近再做分词工作,原来的代码速度太慢,想提速,所以来探求一下有效方法(文末有代码和效果图)

这里先来一张程序的结果图,说明线程和进程谁更快


一些定义

并行是指两个或者多个事件在同一时刻发生。并发是指两个或多个事件在同一时间间隔内发生

线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一个程序的执行实例就是一个进程。


实现过程

而python里面的多线程显然得拿到GIL,执行code,最后释放GIL。所以由于GIL,多线程的时候拿不到,实际上,它是并发实现,即多个事件,在同一时间间隔内发生。

但进程有独立GIL,所以可以并行实现。因此,针对多核CPU,理论上采用多进程更能有效利用资源。


现实问题

在网上的教程里面,经常能见到python多线程的身影。比如网络爬虫的教程、端口扫描的教程。

这里拿端口扫描来说,大家可以用多进程实现下面的脚本,会发现python多进程更快。那么不就是和我们分析相悖了吗?

import sys,threading
from socket import *

host = "127.0.0.1" if len(sys.argv)==1 else sys.argv[1]
portList = [i for i in range(1,1000)]
scanList = []
lock = threading.Lock()
print('Please waiting... From ',host)


def scanPort(port):
    try:
        tcp = socket(AF_INET,SOCK_STREAM)
        tcp.connect((host,port))
    except:
        pass
    else:
        if lock.acquire():
            print('[+]port',port,'open')
            lock.release()
    finally:
        tcp.close()

for p in portList:
    t = threading.Thread(target=scanPort,args=(p,))
    scanList.append(t)
for i in range(len(portList)):
    scanList[i].start()
for i in range(len(portList)):
    scanList[i].join()

谁更快

因为python锁的问题,线程进行锁竞争、切换线程,会消耗资源。所以,大胆猜测一下:

在CPU密集型任务下,多进程更快,或者说效果更好;而IO密集型,多线程能有效提高效率。

大家看一下下面的代码:

import time
import threading
import multiprocessing

max_process = 4
max_thread = max_process

def fun(n,n2):
    #cpu密集型
    for  i in range(0,n):
        for j in range(0,(int)(n*n*n*n2)):
            t = i*j

def thread_main(n2):
    thread_list = []
    for i in range(0,max_thread):
        t = threading.Thread(target=fun,args=(50,n2))
        thread_list.append(t)

    start = time.time()
    print(' [+] much thread start')
    for i in thread_list:
        i.start()
    for i in thread_list:
        i.join()
    print(' [-] much thread use ',time.time()-start,'s')

def process_main(n2):
    p = multiprocessing.Pool(max_process)
    for i in range(0,max_process):
        p.apply_async(func = fun,args=(50,n2))
    start = time.time()
    print(' [+] much process start')
    p.close()#关闭进程池
    p.join()#等待所有子进程完毕
    print(' [-] much process use ',time.time()-start,'s')

if __name__=='__main__':
    print("[++]When n=50,n2=0.1:")
    thread_main(0.1)
    process_main(0.1)
    print("[++]When n=50,n2=1:")
    thread_main(1)
    process_main(1)
    print("[++]When n=50,n2=10:")
    thread_main(10)
    process_main(10)

结果如下:

相关文章
|
1月前
|
调度 开发者 Python
深入浅出操作系统:进程与线程的奥秘
在数字世界的底层,操作系统扮演着不可或缺的角色。它如同一位高效的管家,协调和控制着计算机硬件与软件资源。本文将拨开迷雾,深入探索操作系统中两个核心概念——进程与线程。我们将从它们的诞生谈起,逐步剖析它们的本质、区别以及如何影响我们日常使用的应用程序性能。通过简单的比喻,我们将理解这些看似抽象的概念,并学会如何在编程实践中高效利用进程与线程。准备好跟随我一起,揭开操作系统的神秘面纱,让我们的代码运行得更加流畅吧!
|
7天前
|
消息中间件 调度
如何区分进程、线程和协程?看这篇就够了!
本课程主要探讨操作系统中的进程、线程和协程的区别。进程是资源分配的基本单位,具有独立性和隔离性;线程是CPU调度的基本单位,轻量且共享资源,适合并发执行;协程更轻量,由程序自身调度,适合I/O密集型任务。通过学习这些概念,可以更好地理解和应用它们,以实现最优的性能和资源利用。
41 11
|
6天前
|
Java Linux 调度
硬核揭秘:线程与进程的底层原理,面试高分必备!
嘿,大家好!我是小米,29岁的技术爱好者。今天来聊聊线程和进程的区别。进程是操作系统中运行的程序实例,有独立内存空间;线程是进程内的最小执行单元,共享内存。创建进程开销大但更安全,线程轻量高效但易引发数据竞争。面试时可强调:进程是资源分配单位,线程是CPU调度单位。根据不同场景选择合适的并发模型,如高并发用线程池。希望这篇文章能帮你更好地理解并回答面试中的相关问题,祝你早日拿下心仪的offer!
25 6
|
1月前
|
消息中间件 Unix Linux
【C语言】进程和线程详解
在现代操作系统中,进程和线程是实现并发执行的两种主要方式。理解它们的区别和各自的应用场景对于编写高效的并发程序至关重要。
68 6
|
1月前
|
调度 开发者
深入理解:进程与线程的本质差异
在操作系统和计算机编程领域,进程和线程是两个核心概念。它们在程序执行和资源管理中扮演着至关重要的角色。本文将深入探讨进程与线程的区别,并分析它们在现代软件开发中的应用和重要性。
69 5
|
1月前
|
算法 调度 开发者
深入理解操作系统:进程与线程的管理
在数字世界的复杂编织中,操作系统如同一位精明的指挥家,协调着每一个音符的奏响。本篇文章将带领读者穿越操作系统的幕后,探索进程与线程管理的奥秘。从进程的诞生到线程的舞蹈,我们将一起见证这场微观世界的华丽变奏。通过深入浅出的解释和生动的比喻,本文旨在揭示操作系统如何高效地处理多任务,确保系统的稳定性和效率。让我们一起跟随代码的步伐,走进操作系统的内心世界。
|
1月前
|
调度 开发者
核心概念解析:进程与线程的对比分析
在操作系统和计算机编程领域,进程和线程是两个基本而核心的概念。它们是程序执行和资源管理的基础,但它们之间存在显著的差异。本文将深入探讨进程与线程的区别,并分析它们在现代软件开发中的应用和重要性。
66 4
|
2月前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
2月前
|
监控 JavaScript 前端开发
python中的线程和进程(一文带你了解)
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生分享技术心得的地方。如果你从我的文章中有所收获,欢迎关注我,我将持续更新更多优质内容,你的支持是我前进的动力!🎉🎉🎉
37 0
|
2月前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
82 0