python WAV音频文件处理—— (1)读写WAV文件

简介: python WAV音频文件处理—— (1)读写WAV文件

了解WAV文件格式

WAV是一种波形音频文件格式(Waveform Audio File Format)。虽然是一种古老的格式(九十年代初开发),但今天仍然可以看到这种文件。

WAV具有简单、可移植、高保真等特点。

WAV的波形

声音是一种波,可以用3个属性描述:

  • 振幅(Amplitude) 表示声波强度,可视为响度。
  • 频率(Frequency),波长的倒数,对应音高。
  • 相位(Phase)波开始时对应波周期中的位置。

如果你用音频软件(如Audacity)打开WAV文件,可能看到这样的波形

WAV 文件的结构

WAV 音频文件格式是一种二进制格式,结构如下:

Header 是一组元数据,描述了如何解释接下来的Frame。

Header中的参数说明:

Encoding:编码。样音频信号的数字表示。可用的编码类型包括未压缩的线性脉冲编码调制 (PCM) 和一些压缩格式,如 ADPCM、A-Law 或 μ-Law。

Channels:声道数。每帧中的声道数,对于单声道,通常等于 1 个,对于立体声音轨,通常等于 2 个,但对于环绕声录音,可能会更多。

Frame Rate:帧速率。也称采样率。

Bit Depth:位深度,每个音的比特位数。位深度越大,编码信号的动态范围越大,越能表现声音的细微差别。

为了忠实地表现音乐,大多数 WAV 文件使用立体声 PCM 编码,其中 16 位有符号整数以 44.1 kHz 采样。这些参数对应于标准 CD 质量的音频。巧合的是,这样的采样频率大约是大多数人能听到的最高频率的两倍。根据 Nyquist-Shannon 采样定理,这足以以数字形式捕获声音而不会失真。

Python的wave模块

wave 模块负责读取写入 WAV 文件(但不能播放声音)。

使用wave.open 读取wav文件将返回一个 wave.Wave_read object

import wave
with wave.open("Bongo_sound.wav") as wav_file:
    print(wav_file)

可以使用该对象检索存储在 WAV 文件Header信息并读取编码的音频帧

>>> with wave.open("Bongo_sound.wav") as wav_file:
...     metadata = wav_file.getparams() # header 
...     frames = wav_file.readframes(metadata.nframes) # frame
...

>>> metadata
_wave_params(
    nchannels=1,
    sampwidth=2,
    framerate=44100,
    nframes=212419,
    comptype='NONE',
    compname='not compressed'
)

>>> frames
b'\x01\x00\xfe\xff\x02\x00\xfe\xff\x01\x00\x01\x00\xfe\xff\x02\x00...'

>>> len(frames)
424838

读取的原始比特(bytes),我们需要手动解码。从Header中我们看到,每个音占2个字节(16位)。

我们可以用array模块:

>>> import array
>>> pcm_samples = array.array("h", frames)
>>> len(pcm_samples)
212419


或者使用struct模块:

>>> import struct
>>> format_string = "<" + "h" * (len(frames) // 2)
>>> pcm_samples = struct.unpack(format_string, frames)
>>> len(pcm_samples)
212419


<符号指示字节为小端格式(little-endian)。

numpy提供了更简单的方法:

>>> import numpy as np
>>> pcm_samples = np.frombuffer(frames, dtype="<h")
>>> normalized_amplitudes = pcm_samples / (2 ** 15)

numpy简洁高效,后面都使用numpy进行处理。

写WAV文件

从数学上讲,您可以将任何复杂声音表示为多个不同频率、振幅和相位的正弦波的总和。

由于振幅A被缩放到[-1,1]之间,并且我们不关心相位,因此正弦波可以简化为:

import math

FRAMES_PER_SECOND = 44100

def sound_wave(frequency, num_seconds):
    for frame in range(round(num_seconds * FRAMES_PER_SECOND)):
        time = frame / FRAMES_PER_SECOND
        amplitude = math.sin(2 * math.pi * frequency * time)
        yield round((amplitude + 1) / 2 * 255)


现在,我们可以生成声音了。

下面我们生成一个频率为440Hz、持续2.5s的声音:

import math
import wave

...

with wave.open("output.wav", mode="wb") as wav_file:
    wav_file.setnchannels(1)
    wav_file.setsampwidth(1)
    wav_file.setframerate(FRAMES_PER_SECOND)
    wav_file.writeframes(bytes(sound_wave(440, 2.5)))

使用声音软件打开生成的文件,听到嘟的一声。

混合和立体声

为了合成立体声,

我们需要制造左右两个声道的声音,并在每一帧交替播放

import itertools
import math
import wave

FRAMES_PER_SECOND = 44100

def sound_wave(frequency, num_seconds):
    for frame in range(round(num_seconds * FRAMES_PER_SECOND)):
        time = frame / FRAMES_PER_SECOND
        amplitude = math.sin(2 * math.pi * frequency * time)
        yield round((amplitude + 1) / 2 * 255)

left_channel = sound_wave(440, 2.5)
right_channel = sound_wave(480, 2.5)
# 交替播放 两个声道
stereo_frames = itertools.chain(*zip(left_channel, right_channel)) 

with wave.open("output.wav", mode="wb") as wav_file:
    wav_file.setnchannels(2) # 2 channel
    wav_file.setsampwidth(1)
    wav_file.setframerate(FRAMES_PER_SECOND)
    wav_file.writeframes(bytes(stereo_frames))

或者,与其为声波分配单独的声道,不如将它们混合在一起以创建有趣的效果。

混合两种声音的效果等同于将两个声音的振幅相加

import math
import wave

FRAMES_PER_SECOND = 44100

def beat(frequency1, frequency2, num_seconds):
    for frame in range(round(num_seconds * FRAMES_PER_SECOND)):
        time = frame / FRAMES_PER_SECOND
        amplitude1 = math.sin(2 * math.pi * frequency1 * time)
        amplitude2 = math.sin(2 * math.pi * frequency2 * time)
        amplitude = max(-1, min(amplitude1 + amplitude2, 1))
        yield round((amplitude + 1) / 2 * 255)

with wave.open("output.wav", mode="wb") as wav_file:
    wav_file.setnchannels(1)
    wav_file.setsampwidth(1)
    wav_file.setframerate(FRAMES_PER_SECOND)
    wav_file.writeframes(bytes(beat(440, 441, 2.5)))

使用更高的位深度

到目前为止,您一直使用单个字节(8位)来表示每个音频样本,以保持简单。这为您提供了 256 个不同的振幅级别,足以满足您的需求。但是,您迟早会希望提高位深度,以实现更大的动态范围和更好的音质。

切换到更高的位深度时,必须相应地调整缩放字节转换。您可以使用 NumPy 优雅地表达声波方程并有效地处理字节转换:

import numpy as np
import wave

FRAMES_PER_SECOND = 44100

def sound_wave(frequency, num_seconds):
    time = np.arange(0, num_seconds, 1 / FRAMES_PER_SECOND)
    amplitude = np.sin(2 * np.pi * frequency * time)
    return np.clip(
        np.round(amplitude * 32768),
        -32768,
        32767,
    ).astype("<h")

left_channel = sound_wave(440, 2.5)
right_channel = sound_wave(480, 2.5)
stereo_frames = np.dstack((left_channel, right_channel)).flatten()

with wave.open("output.wav", mode="wb") as wav_file:
    wav_file.setnchannels(2)
    wav_file.setsampwidth(2) # 2 bytes == 16 bits 
    wav_file.setframerate(FRAMES_PER_SECOND)
    wav_file.writeframes(stereo_frames)
相关文章
|
20小时前
|
缓存 算法 Python
python文件读写讲解
python文件读写讲解
|
21小时前
|
安全 Linux PHP
Python文件读写的详细讲解
Python文件读写的详细讲解
|
21小时前
|
XML 存储 JavaScript
python读取xml文件详细讲解
python读取xml文件详细讲解
10 0
|
22小时前
|
IDE 开发工具 Python
使用python3遍历文件夹并将文件目录保存到指定文件
使用python3遍历文件夹并将文件目录保存到指定文件
6 0
pyaudio:基于pyaudio利用Python编程实现播放音频mp3、wav等格式文件
pyaudio:基于pyaudio利用Python编程实现播放音频mp3、wav等格式文件
pyaudio:基于pyaudio利用Python编程实现播放音频mp3、wav等格式文件
|
Python API
python 播放 wav 文件
未使用其他库, 只是使用 pywin32 调用系统底层 API 播放 wav 文件。 # Our raison d'etre - playing sounds import pywintypes import struct import win32event import win32com.
829 0
|
2天前
|
机器学习/深度学习 人工智能 前端开发
Python中的模块化编程
【6月更文挑战第17天】Python模块化编程与软件架构设计的关键在于拆分任务到独立模块,提高代码的可维护性、可重用性和可扩展性。例如,学生管理系统可分解为录入、查询和删除模块。MVC和MVVM架构模式有助于组织代码,而微服务和函数式编程将在未来发展中扮演重要角色。通过示例代码,读者能学习如何实现这些概念,提升项目开发效率和质量。
148 57
|
9天前
|
测试技术 虚拟化 云计算
GitHub高赞!速通Python编程基础手册,被玩出花了!
随着云时代的来临,Python 语言越来越被程序开发人员喜欢和使用,因为其不仅简单易学,而且还有丰富的第三方程序库和相应完善的管理工具。 从命令行脚本程序到 GUI程序,从图形技术到科学计算,从软件开发到自动化测试,从云计算到虚拟化,所有这些领域都有 Python 的身影。 今天给小伙伴们分享的这份手册采用以任务为导向的编写模式,全面地介绍了 Python 编程基础及其相关知识的应用,讲解了如何利用 Python 的知识解决部分实际问题。
GitHub高赞!速通Python编程基础手册,被玩出花了!
|
22小时前
|
Python
Python多进程编程详细剖析
Python多进程编程详细剖析
11 3