【保姆级教程|YOLOv8改进】【4】添加双层路由注意力机制:BiLevelRoutingAttention,性能和效率十分不错

简介: 【保姆级教程|YOLOv8改进】【4】添加双层路由注意力机制:BiLevelRoutingAttention,性能和效率十分不错

1.BiLevelRoutingAttention简介

论文发表时间:2023.03.15

github地址:https://github.com/rayleizhu/BiFormer

paper地址:https://arxiv.org/pdf/2303.08810.pdf

摘要:作为视觉变换器的核心构建模块,注意力是捕获远程依赖性的强大工具。然而,这种强大功能是有代价的:由于需要计算所有空间位置之间的成对令牌交互,它会带来巨大的计算负担和沉重的内存占用。一系列工作试图通过引入手工制作的和内容不可知的稀疏性到注意力中来减轻这个问题,例如限制注意力操作在局部窗口、轴向条纹或扩展窗口内部。与这些方法相反,我们提出了一种新颖的动态稀疏注意力通过双层路由来实现更灵活的计算分配与内容感知。具体来说,对于一个查询,不相关的键值对首先在粗略的区域级别被过滤掉,然后在剩余候选区域(即路由区域)的并集中应用细粒度令牌到令牌的注意力。我们提供了一个简单而有效的提出的双层路由注意力实现它利用稀疏性来节省计算和内存,同时只涉及GPU友好的密集矩阵乘法。基于提出的双层路由注意力构建的一个新的通用视觉变换器,名为BiFormer,随后被提出。由于BiFormer以一种查询自适应的方式只关注小部分相关令牌,不受其他不相关令牌的分心,因此它在良好的性能和高计算效率方面都享有优势,特别是在密集预测任务中。在图像分类、目标检测和语义分割等多个计算机视觉任务中的实证结果验证了我们设计的有效性。

论文主要亮点如下:

  • 为原始注意力机制引入了一种新颖的双层次路由机制,这使得在查询自适应的方式下可以实现内容感知的稀疏模式。
  • 将双层次路由注意力作为基本构件,我们提出了一个通用的视觉变换器命名为BiFormer。
  • 在各种计算机视觉任务上的实验结果,包括图像分类、目标检测和语义分割,显示所提出的BiFormer在类似模型大小下,实现了比基线模型显著更好的性能。

1.1 网络结构

1.2 稀疏性应用方式

1.3 性能对比

2.YOLOv8添加注意力机制

替换位置与替换后网络结构示意

添加位置

替换后的YOLOv8网络结构如下:

定义注意力机制类

ultralytics/nn/modules/block.py中添加如下代码块,并定义BiLevelRoutingAttention类:

并在ultralytics/nn/modules/block.py中最上方添加如下代码:

修改指定文件

ultralytics/nn/modules/__init__.py文件中的添加如下代码:

ultralytics/nn/tasks.py 上方导入BiLevelRoutingAttention类名,并在parse_model解析函数中添加如下代码:

elif m in [BiLevelRoutingAttention]:
            c2 = ch[f]
            args = [c2, *args[0:]]

ultralytics/cfg/models/v8文件夹下新建yolov8-BiLevelRoutingAttention.yaml文件,内容如下:

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
  - [-1, 1, BiLevelRoutingAttention, []] # 16
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 19 (P4/16-medium)
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 22 (P5/32-large)
  - [[16, 19, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3.加载配置文件并训练

加载yolov8-BiLevelRoutingAttention.yaml配置文件,并运行train.py训练代码:

#coding:utf-8
from ultralytics import YOLO
if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8-BiLevelRoutingAttention.yaml')
    model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='datasets/TomatoData/data.yaml', epochs=50, batch=4)

注意观察,打印出的网络结构是否正常修改,如下图所示:

4.模型推理

模型训练完成后,我们使用训练好的模型对图片进行检测:

#coding:utf-8
from ultralytics import YOLO
import cv2
# 所需加载的模型目录
# path = 'models/best2.pt'
path = 'runs/detect/train11/weights/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Riped tomato_8.jpeg"
# 加载预训练模型
# conf  0.25  object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

目录
打赏
0
0
0
0
127
分享
相关文章
自蒸馏:一种简单高效的优化方式
背景知识蒸馏(knowledge distillation)指的是将预训练好的教师模型的知识通过蒸馏的方式迁移至学生模型,一般来说,教师模型会比学生模型网络容量更大,模型结构更复杂。对于学生而言,主要增益信息来自于更强的模型产出的带有更多可信信息的soft_label。例如下右图中,两个“2”对应的hard_label都是一样的,即0-9分类中,仅“2”类别对应概率为1.0,而soft_label
自蒸馏:一种简单高效的优化方式
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
110 14
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
YOLOv11改进策略【模型轻量化】| 使用 MoblieOne 模块,引入结构重参数化,提高模型检测效率
YOLOv11改进策略【模型轻量化】| 使用 MoblieOne 模块,引入结构重参数化,提高模型检测效率
91 12
线性化注意力综述:突破Softmax二次复杂度瓶颈的高效计算方案
大型语言模型虽在各领域表现出色,但其核心的softmax注意力机制存在显著的计算资源消耗问题。本文探讨通过线性时间复杂度的替代方案突破这一瓶颈,介绍线性注意力机制、门控线性注意力及状态空间模型(SSM)等创新方法,旨在优化计算效率与内存容量之间的权衡,提升模型性能。
226 9
线性化注意力综述:突破Softmax二次复杂度瓶颈的高效计算方案
|
6月前
|
UED
代码分割的优势和劣势分别是什么?
代码分割的优势和劣势分别是什么?
【保姆级教程|YOLOv8添加注意力机制】【2】在C2f结构中添加ShuffleAttention注意力机制并训练
【保姆级教程|YOLOv8添加注意力机制】【2】在C2f结构中添加ShuffleAttention注意力机制并训练
ACL 2024:提升大模型持续学习性能,哈工大、度小满提出共享注意力框架SAPT
【6月更文挑战第8天】哈工大和度小满在ACL 2024会议上提出SAPT,一种共享注意力框架,用于提升大模型的持续学习性能,解决灾难性遗忘和知识转移问题。SAPT通过协调学习和选择模块,共享注意力以保留旧知识并有效转移至新任务。实验显示SAPT在多个基准和模型规模上表现优秀,但可能增加模型复杂性和计算成本,且在特定任务中适用性需进一步评估。论文链接:https://arxiv.org/abs/2401.08295
177 8
YOLOv8改进 | 主干网络 | 增加网络结构增强小目标检测能力【独家创新——附结构图】
YOLOv8在小目标检测上存在挑战,因卷积导致信息丢失。本文教程将原网络结构替换为更适合小目标检测的backbone,并提供结构图。通过讲解原理和手把手教学,指导如何修改代码,提供完整代码实现,适合新手实践。文章探讨了大特征图对小目标检测的重要性,如细节保留、定位精度、特征丰富度和上下文信息,并介绍了FPN等方法。YOLOv8流程包括预处理、特征提取、融合和检测。修改后的网络结构增加了上采样和concatenate步骤,以利用更大特征图检测小目标。完整代码和修改后的结构图可在文中链接获取。
【保姆级教程|YOLOv8添加注意力机制】【1】添加SEAttention注意力机制步骤详解、训练及推理使用
【保姆级教程|YOLOv8添加注意力机制】【1】添加SEAttention注意力机制步骤详解、训练及推理使用
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等