基于YOLOv8深度学习的苹果叶片病害智能诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

简介: 基于YOLOv8深度学习的苹果叶片病害智能诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

前言

苹果叶片病害智能诊断系统在农业科技和精准农业中扮演着极其重要的角色。此技术通过高效准确地识别不同的叶片病害,可以大幅提升农业生产的质量与效率。作为一种快速、无创的诊断工具,它可以帮助农民及时发现苹果园的病害情况,进而采取相应的防治措施,这对于减少作物损失、降低化学农药的使用以及保护生态环境都至关重要。

应用场景方面,该系统首先可以在苹果种植园区广泛部署。通过移动设备或装载在农用无人机上的相机收集叶片图像,系统将这些图像数据实时处理并识别出具体病害类型,从而使得农业管理人员可以进行有针对性的病害防控。此外,它也适用于农业研究机构和农业扩展服务中,用于监测病害发展趋势和研究病害与环境因素的关系。

在科研领域,它有助于研究人员收集和分析大量数据,促进新型病害防治技术的开发。

此系统还可以融入智能农业信息平台,为农户提供实时病害预警服务,让农户能更快作出反应,科学施肥和用药。随着AI技术与物联网的结合,苹果叶片病害智能诊断系统的应用前景将愈加广阔,不仅助力提升农业生产水平,也是实现可持续农业发展的关键工具之一。

博主通过搜集苹果叶片病害的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的苹果叶片病害智能诊断系统,可支持图片、批量图片、视频以及摄像头检测

软件初始界面如下图所示:

检测结果界面如下:

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行9种不同苹果叶片诊断识别,分别为:['交链孢叶斑病','褐斑病','青枯病','灰斑病','健康','花叶病毒病','白粉病','锈病','疮痂病'];
2. 支持图片、批量图片、视频以及摄像头检测
3. 界面可实时显示识别结果置信度用时等信息;

(1)图片检测演示

单个图片检测操作如下:

点击打开图片按钮,选择需要检测的图片,就会显示检测结果。操作演示如下:

批量图片检测操作如下:

点击打开文件夹按钮,选择需要检测的文件夹【注意是选择文件夹】,可进行批量图片检测,表格中会有所有图片的检测结果信息,点击表格中的指定行,会显示指定行图片的检测结果双击路径单元格,会看到图片的完整路径。操作演示如下:

(2)视频检测演示

点击打开视频按钮,打开选择需要检测的视频,就会自动显示检测结果。

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击摄像头按钮,可关闭摄像头。

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的检测与识别技术,它基于先前YOLO版本在目标检测与识别任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

其主要网络结构如下:

2. 数据集准备与训练

本文使用的苹果叶片病害数据集共包含13775张图片,分为9个类别,分别是:['交链孢叶斑病','褐斑病','青枯病','灰斑病','健康','花叶病毒病','白粉病','锈病','疮痂病']。部分数据集及类别信息如下:

图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入DiseaseData目录下。

3.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO
# 加载预训练模型
model = YOLO("yolov8n-cls.pt")
if __name__ == '__main__':
    model.train(data='datasets/DiseaseData', epochs=300, batch=4)
    # results = model.val()

4. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

本文训练结果如下:

5. 利用模型进行推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2
# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Brown spot (18).jpg"
# 加载模型
model = YOLO(path, task='classify')
# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.3,fy=0.3,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:

以上便是关于此款苹果叶片病害智能诊断系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、批量图片、视频及摄像头进行检测

目录
打赏
0
0
0
0
127
分享
相关文章
基于Python+Vue开发的商城管理系统源码+运行步骤
基于Python+Vue开发的商城管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的网上商城管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。
25 7
基于Python+Vue开发的家具商城管理系统源码+运行步骤
基于Python+Vue开发的家具商城管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的家具商城管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。
22 8
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
13天前
|
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
24 4
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化和调试技巧,涵盖使用内置函数、列表推导式、生成器、`cProfile`、`numpy`等优化手段,以及`print`、`assert`、`pdb`和`logging`等调试方法。通过实战项目如优化排序算法和日志记录的Web爬虫,帮助你编写高效稳定的Python程序。
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
以上内容是一个简单的实现在Java后端中通过DockerClient操作Docker生成python环境并执行代码,最后销毁的案例全过程,也是实现一个简单的在线编程后端API的完整流程,你可以在此基础上添加额外的辅助功能,比如上传文件、编辑文件、查阅文件、自定义安装等功能。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
Python 高级编程与实战:构建 RESTful API
本文深入探讨了使用 Python 构建 RESTful API 的方法,涵盖 Flask、Django REST Framework 和 FastAPI 三个主流框架。通过实战项目示例,详细讲解了如何处理 GET、POST 请求,并返回相应数据。学习这些技术将帮助你掌握构建高效、可靠的 Web API。
Python 高级编程与实战:构建自动化测试框架
本文深入探讨了Python中的自动化测试框架,包括unittest、pytest和nose2,并通过实战项目帮助读者掌握这些技术。文中详细介绍了各框架的基本用法和示例代码,助力开发者快速验证代码正确性,减少手动测试工作量。学习资源推荐包括Python官方文档及Real Python等网站。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等