使用Python处理JSON格式数据

简介: 使用Python处理JSON格式数据

JSON(JavaScript Object Notation, JS 对象简谱) 是一种轻量级的数据交换格式。

它基于 ECMAScript (欧洲计算机协会制定的js规范)的一个子集,采用完全独立于编程语言的文本格式来存储和表示数据。

JSON最常用的格式是对象的 键值对。例如下面这样:

1

{"firstName": "Brett", "lastName": "McLaughlin"}

------参照Python编程从入门到实践(第三版)

------Python 3

------

一、下载json格式文件

书中介绍了两种下载方法,我用来requests的方法,(相对简单)

方法如下:

1.载入requests库 (如果没有需要先下载)import requests

2.设置url

3.使用requests.get(url)方法,向服务器发送请求,获取数据

4.写入文件

源码如下:

import requests
 
json_url = 'https://raw.githubusercontent.com/muxuezi/btc/master/btc_close_2017.json'
req = requests.get(json_url)
 
#将数据写入文件
with open('btc_close_2017_request.json','w')as f:
    f.write(req.text)
file_requests = req.json()
print(file_requests)

运行后,可以看到一大串键值对组成的字典。


二、提取数据

1.导入json模块

2.加载json文件

3.格式化打印

import json
 
#加载数据至列表
filename = 'btc_close_2017_request.json'
with open (filename) as f:
    btc_data = json.load(f)
#打印每一天的消息
for btc_dict in btc_data:
    date = btc_dict['date']
    month = btc_dict['month']
    week = btc_dict['week']
    weekday = btc_dict['weekday']
    close = btc_dict['close']
    print("{} is month {} week {},{},the close price is {} RMB".format(date, month,week, weekday, close))

效果如下:



3.处理数据,将字符串转化成数字。

使用int()将字符串转化成整数

注意含小数点的字符串(此处为close)需要先转化成float,然后再转化成int.

4.绘制折线图

使用pygal

import json
import pygal
#加载数据至列表
filename = 'btc_close_2017_request.json'
with open (filename) as f:
    btc_data = json.load(f)
 
dates =[]
months = []
weeks = []
weekdays =[]
close =[]
 
for btc_dict in btc_data:
    dates.append(btc_dict['date'])
    months.append(int(btc_dict['month']))
    weeks.append(int(btc_dict['week']))
    weekdays.append( btc_dict['weekday'])
    close.append(int(float(btc_dict['close'])))
   
line_chart =pygal.Line(x_label_rotation=20,show_minor_x_labels=False)
line_chart.title = ' 收盘价RMB '
line_chart.x_labels =dates
N = 20
line_chart.x_labels_major = dates[::N]
line_chart.add('收盘价', close)
line_chart.render_to_file('收盘价折线图.svg')

效果如下:

相关文章
|
2月前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
1269 1
|
2月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
414 0
|
2月前
|
JSON API 数据格式
淘宝拍立淘按图搜索API系列,json数据返回
淘宝拍立淘按图搜索API系列通过图像识别技术实现商品搜索功能,调用后返回的JSON数据包含商品标题、图片链接、价格、销量、相似度评分等核心字段,支持分页和详细商品信息展示。以下是该API接口返回的JSON数据示例及详细解析:
|
2月前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
2月前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
2月前
|
JSON 算法 API
Python中的json模块:从基础到进阶的实用指南
本文深入解析Python内置json模块的使用,涵盖序列化与反序列化核心函数、参数配置、中文处理、自定义对象转换及异常处理,并介绍性能优化与第三方库扩展,助你高效实现JSON数据交互。(238字)
371 4
|
2月前
|
JSON 中间件 Java
【GoGin】(3)Gin的数据渲染和中间件的使用:数据渲染、返回JSON、浅.JSON()源码、中间件、Next()方法
我们在正常注册中间件时,会打断原有的运行流程,但是你可以在中间件函数内部添加Next()方法,这样可以让原有的运行流程继续执行,当原有的运行流程结束后再回来执行中间件内部的内容。​ c.Writer.WriteHeaderNow()还会写入文本流中。可以看到使用next后,正常执行流程中并没有获得到中间件设置的值。接口还提供了一个可以修改ContentType的方法。判断了传入的状态码是否符合正确的状态码,并返回。在内部封装时,只是标注了不同的render类型。再看一下其他返回的类型;
176 3
|
2月前
|
JSON Java Go
【GoGin】(2)数据解析和绑定:结构体分析,包括JSON解析、form解析、URL解析,区分绑定的Bind方法
bind或bindXXX函数(后文中我们统一都叫bind函数)的作用就是将,以方便后续业务逻辑的处理。
275 3
|
2月前
|
XML JSON 数据处理
超越JSON:Python结构化数据处理模块全解析
本文深入解析Python中12个核心数据处理模块,涵盖csv、pandas、pickle、shelve、struct、configparser、xml、numpy、array、sqlite3和msgpack,覆盖表格处理、序列化、配置管理、科学计算等六大场景,结合真实案例与决策树,助你高效应对各类数据挑战。(238字)
186 0
|
6月前
|
JSON 定位技术 PHP
PHP技巧:解析JSON及提取数据
这就是在PHP世界里探索JSON数据的艺术。这场狩猎不仅仅是为了获得数据,而是一种透彻理解数据结构的行动,让数据在你的编码海洋中畅游。通过这次冒险,你已经掌握了打开数据宝箱的钥匙。紧握它,让你在编程世界中随心所欲地航行。
226 67

推荐镜像

更多