Java基础1-Java基本数据类型,以及自动拆装箱里隐藏的秘密(一)

简介: Java基础1-Java基本数据类型,以及自动拆装箱里隐藏的秘密(一)

本系列文章将整理到我在GitHub上的《Java面试指南》仓库,更多精彩内容请到我的仓库里查看

https://github.com/h2pl/Java-Tutorial

喜欢的话麻烦点下Star哈

文章首发于我的个人博客:

www.how2playlife.com

本文是微信公众号【Java技术江湖】的《夯实Java基础系列博文》其中一篇,本文部分内容来源于网络,为了把本文主题讲得清晰透彻,也整合了很多我认为不错的技术博客内容,引用其中了一些比较好的博客文章,如有侵权,请联系作者。该系列博文会告诉你如何从入门到进阶,一步步地学习Java基础知识,并上手进行实战,接着了解每个Java知识点背后的实现原理,更完整地了解整个Java技术体系,形成自己的知识框架。为了更好地总结和检验你的学习成果,本系列文章也会提供每个知识点对应的面试题以及参考答案。

如果对本系列文章有什么建议,或者是有什么疑问的话,也可以关注公众号【Java技术江湖】联系作者,欢迎你参与本系列博文的创作和修订。

Java 基本数据类型

变量就是申请内存来存储值。也就是说,当创建变量的时候,需要在内存中申请空间。

内存管理系统根据变量的类型为变量分配存储空间,分配的空间只能用来储存该类型数据。

因此,通过定义不同类型的变量,可以在内存中储存整数、小数或者字符。

Java 的两大数据类型:

  • 内置数据类型
  • 引用数据类型
  • - *

内置数据类型

Java语言提供了八种基本类型。六种数字类型(四个整数型,两个浮点型),一种字符类型,还有一种布尔型。

byte:

  • byte 数据类型是8位、有符号的,以二进制补码表示的整数;
  • 最小值是 -128(-2^7);
  • 最大值是 127(2^7-1);
  • 默认值是 0;
  • byte 类型用在大型数组中节约空间,主要代替整数,因为 byte 变量占用的空间只有 int 类型的四分之一;
  • 例子:byte a = 100,byte b = -50。

short:

  • short 数据类型是 16 位、有符号的以二进制补码表示的整数
  • 最小值是 -32768(-2^15);
  • 最大值是 32767(2^15 - 1);
  • Short 数据类型也可以像 byte 那样节省空间。一个short变量是int型变量所占空间的二分之一;
  • 默认值是 0;
  • 例子:short s = 1000,short r = -20000。

int:

  • int 数据类型是32位、有符号的以二进制补码表示的整数;
  • 最小值是 -2,147,483,648(-2^31);
  • 最大值是 2,147,483,647(2^31 - 1);
  • 一般地整型变量默认为 int 类型;
  • 默认值是 0 ;
  • 例子:int a = 100000, int b = -200000。

long:

  • long 数据类型是 64 位、有符号的以二进制补码表示的整数;
  • 最小值是 -9,223,372,036,854,775,808(-2^63);
  • 最大值是 9,223,372,036,854,775,807(2^63 -1);
  • 这种类型主要使用在需要比较大整数的系统上;
  • 默认值是 0L;
  • 例子: long a = 100000L,Long b = -200000L。
    "L"理论上不分大小写,但是若写成"l"容易与数字"1"混淆,不容易分辩。所以最好大写。

float:

  • float 数据类型是单精度、32位、符合IEEE 754标准的浮点数;
  • float 在储存大型浮点数组的时候可节省内存空间;
  • 默认值是 0.0f;
  • 浮点数不能用来表示精确的值,如货币;
  • 例子:float f1 = 234.5f。

double:

  • double 数据类型是双精度、64 位、符合IEEE 754标准的浮点数;
  • 浮点数的默认类型为double类型;
  • double类型同样不能表示精确的值,如货币;
  • 默认值是 0.0d;
  • 例子:double d1 = 123.4。

boolean:

  • boolean数据类型表示一位的信息;
  • 只有两个取值:true 和 false;
  • 这种类型只作为一种标志来记录 true/false 情况;
  • 默认值是 false;
  • 例子:boolean one = true。

char:

  • char类型是一个单一的 16 位 Unicode 字符;
  • 最小值是 u0000(即为0);
  • 最大值是 uffff(即为65,535);
  • char 数据类型可以储存任何字符;
  • 例子:char letter = 'A';。
//8位
byte bx = Byte.MAX_VALUE;
byte bn = Byte.MIN_VALUE;
//16位
short sx = Short.MAX_VALUE;
short sn = Short.MIN_VALUE;
//32位
int ix = Integer.MAX_VALUE;
int in = Integer.MIN_VALUE;
//64位
long lx = Long.MAX_VALUE;
long ln = Long.MIN_VALUE;
//32位
float fx = Float.MAX_VALUE;
float fn = Float.MIN_VALUE;
//64位
double dx = Double.MAX_VALUE;
double dn = Double.MIN_VALUE;
//16位
char cx = Character.MAX_VALUE;
char cn = Character.MIN_VALUE;
//1位
boolean bt = Boolean.TRUE;
boolean bf = Boolean.FALSE;复制代码
`127`
`-128`
`32767`
`-32768`
`2147483647`
`-2147483648`
`9223372036854775807`
`-9223372036854775808`
`3.4028235E38`
`1.4E-45`
`1.7976931348623157E308`
`4.9E-324`
`￿`

`true`
`false`复制代码

引用类型

  • 在Java中,引用类型的变量非常类似于C/C++的指针。引用类型指向一个对象,指向对象的变量是引用变量。这些变量在声明时被指定为一个特定的类型,比如 Employee、Puppy 等。变量一旦声明后,类型就不能被改变了。
  • 对象、数组都是引用数据类型。
  • 所有引用类型的默认值都是null。
  • 一个引用变量可以用来引用任何与之兼容的类型。
  • 例子:Site site = new Site("Runoob")。

Java 常量

常量在程序运行时是不能被修改的。

在 Java 中使用 final 关键字来修饰常量,声明方式和变量类似:

final double PI = 3.1415927;复制代码

虽然常量名也可以用小写,但为了便于识别,通常使用大写字母表示常量。

字面量可以赋给任何内置类型的变量。例如:

byte a = 68;
char a = 'A'复制代码

自动拆箱和装箱(详解)

Java 5增加了自动装箱与自动拆箱机制,方便基本类型与包装类型的相互转换操作。在Java 5之前,如果要将一个int型的值转换成对应的包装器类型Integer,必须显式的使用new创建一个新的Integer对象,或者调用静态方法Integer.valueOf()。

//在Java 5之前,只能这样做
Integer value = new Integer(10);
//或者这样做
Integer value = Integer.valueOf(10);
//直接赋值是错误的
//Integer value = 10;`复制代码

在Java 5中,可以直接将整型赋给Integer对象,由编译器来完成从int型到Integer类型的转换,这就叫自动装箱。

`//在Java 5中,直接赋值是合法的,由编译器来完成转换`
`Integer value = 10;`
`与此对应的,自动拆箱就是可以将包装类型转换为基本类型,具体的转换工作由编译器来完成。`
`//在Java 5 中可以直接这么做`
`Integer value = new Integer(10);`
`int i = value;`复制代码

自动装箱与自动拆箱为程序员提供了很大的方便,而在实际的应用中,自动装箱与拆箱也是使用最广泛的特性之一。自动装箱和自动拆箱其实是Java编译器提供的一颗语法糖(语法糖是指在计算机语言中添加的某种语法,这种语法对语言的功能并没有影响,但是更方便程序员使用。通过可提高开发效率,增加代码可读性,增加代码的安全性)。

实现

在八种包装类型中,每一种包装类型都提供了两个方法:

静态方法valueOf(基本类型):将给定的基本类型转换成对应的包装类型;

实例方法xxxValue():将具体的包装类型对象转换成基本类型;下面我们以int和Integer为例,说明Java中自动装箱与自动拆箱的实现机制。看如下代码:

class Auto //code1
{
    public static void main(String[] args) 
    {
        //自动装箱
        Integer inte = 10;
        //自动拆箱
        int i = inte;

    //再double和Double来验证一下
    Double doub = 12.40;
    double d = doub;
    
    }

}复制代码

上面的代码先将int型转为Integer对象,再讲Integer对象转换为int型,毫无疑问,这是可以正确运行的。可是,这种转换是怎么进行的呢?使用反编译工具,将生成的Class文件在反编译为Java文件,让我们看看发生了什么:

class Auto//code2
{
  public static void main(String[] paramArrayOfString)
  {
    Integer localInteger = Integer.valueOf(10);复制代码

我们可以看到经过javac编译之后,code1的代码被转换成了code2,实际运行时,虚拟机运行的就是code2的代码。也就是说,虚拟机根本不知道有自动拆箱和自动装箱这回事;在将Java源文件编译为class文件的过程中,javac编译器在自动装箱的时候,调用了Integer.valueOf()方法,在自动拆箱时,又调用了intValue()方法。我们可以看到,double和Double也是如此。实现总结:其实自动装箱和自动封箱是编译器为我们提供的一颗语法糖。在自动装箱时,编译器调用包装类型的valueOf()方法;在自动拆箱时,编译器调用了相应的xxxValue()方法。

自动装箱与拆箱中的“坑”

在使用自动装箱与自动拆箱时,要注意一些陷阱,为了避免这些陷阱,我们有必要去看一下各种包装类型的源码。

Integer源码

public final class Integer extends Number implements Comparable<Integer> {
    private final int value;
    

/*Integer的构造方法,接受一个整型参数,Integer对象表示的int值,保存在value中*/
 public Integer(int value) {
        this.value = value;
 }
 
/*equals()方法判断的是:所代表的int型的值是否相等*/
 public boolean equals(Object obj) {
        if (obj instanceof Integer) {
            return value == ((Integer)obj).intValue();
        }
        return false;
}
 
/*返回这个Integer对象代表的int值,也就是保存在value中的值*/
 public int intValue() {
        return value;
 }
 
 /**
  * 首先会判断i是否在[IntegerCache.low,Integer.high]之间
  * 如果是,直接返回Integer.cache中相应的元素
  * 否则,调用构造方法,创建一个新的Integer对象
  */
 public static Integer valueOf(int i) {
    assert IntegerCache.high >= 127;
    if (i >= IntegerCache.low && i <= IntegerCache.high)
        return IntegerCache.cache[i + (-IntegerCache.low)];
    return new Integer(i);
 }

/**
  * 静态内部类,缓存了从[low,high]对应的Integer对象
  * low -128这个值不会被改变
  * high 默认是127,可以改变,最大不超过:Integer.MAX_VALUE - (-low) -1
  * cache 保存从[low,high]对象的Integer对象
 */
 private static class IntegerCache {
    static final int low = -128;
    static final int high;
    static final Integer cache[];
 
    static {
        // high value may be configured by property
        int h = 127;
        String integerCacheHighPropValue =
            sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
        if (integerCacheHighPropValue != null) {
            int i = parseInt(integerCacheHighPropValue);
            i = Math.max(i, 127);
            // Maximum array size is Integer.MAX_VALUE
            h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
        }
        high = h;
 
        cache = new Integer[(high - low) + 1];
        int j = low;
        for(int k = 0; k < cache.length; k++)
            cache[k] = new Integer(j++);
    }
 
    private IntegerCache() {}
}
复制代码

以上是Oracle(Sun)公司JDK 1.7中Integer源码的一部分,通过分析上面的代码,得到:

1)Integer有一个实例域value,它保存了这个Integer所代表的int型的值,且它是final的,也就是说这个Integer对象一经构造完成,它所代表的值就不能再被改变。

2)Integer重写了equals()方法,它通过比较两个Integer对象的value,来判断是否相等。

3)重点是静态内部类IntegerCache,通过类名就可以发现:它是用来缓存数据的。它有一个数组,里面保存的是连续的Integer对象。(a) low:代表缓存数据中最小的值,固定是-128。

(b) high:代表缓存数据中最大的值,它可以被该改变,默认是127。high最小是127,最大是Integer.MAX

VALUE-(-low)-1,如果high超过了这个值,那么cache[ ]的长度就超过Integer.MAX

VALUE了,也就溢出了。

(c) cache[]:里面保存着从[low,high]所对应的Integer对象,长度是high-low+1(因为有元素0,所以要加1)。

4)调用valueOf(inti)方法时,首先判断i是否在[low,high]之间,如果是,则复用Integer.cache[i-low]。比如,如果Integer.valueOf(3),直接返回Integer.cache[131];如果i不在这个范围,则调用构造方法,构造出一个新的Integer对象。

5)调用intValue(),直接返回value的值。通过3)和4)可以发现,默认情况下,在使用自动装箱时,VM会复用[-128,127]之间的Integer对象。

Integer  a1 = 1;
Integer  a2 = 1;
Integer  a3 = new Integer(1);
//会打印true,因为a1和a2是同一个对象,都是Integer.cache[129]
System.out.println(a1 == a2);
//false,a3构造了一个新的对象,不同于a1,a2
System.out.println(a1 == a3);
复制代码


Java基础1-Java基本数据类型,以及自动拆装箱里隐藏的秘密(二):https://developer.aliyun.com/article/1535599

目录
相关文章
重学Java基础篇—Java类加载顺序深度解析
本文全面解析Java类的生命周期与加载顺序,涵盖从加载到卸载的七个阶段,并深入探讨初始化阶段的执行规则。通过单类、继承体系的实例分析,明确静态与实例初始化的顺序。同时,列举六种触发初始化的场景及特殊场景处理(如接口初始化)。提供类加载完整流程图与记忆口诀,助于理解复杂初始化逻辑。此外,针对空指针异常等问题提出排查方案,并给出最佳实践建议,帮助开发者优化程序设计、定位BUG及理解框架机制。最后扩展讲解类加载器层次与双亲委派机制,为深入研究奠定基础。
29 0
重学Java基础篇—Java对象创建的7种核心方式详解
本文全面解析了Java中对象的创建方式,涵盖基础到高级技术。包括`new关键字`直接实例化、反射机制动态创建、克隆与反序列化复用对象,以及工厂方法和建造者模式等设计模式的应用。同时探讨了Spring IOC容器等框架级创建方式,并对比各类方法的适用场景与优缺点。此外,还深入分析了动态代理、Unsafe类等扩展知识及注意事项。最后总结最佳实践,建议根据业务需求选择合适方式,在灵活性与性能间取得平衡。
47 3
|
8天前
|
重学Java基础篇—Java泛型深度使用指南
本内容系统介绍了Java泛型的核心价值、用法及高级技巧。首先阐述了泛型在**类型安全**与**代码复用**中的平衡作用,解决强制类型转换错误等问题。接着详细讲解了泛型类定义、方法实现、类型参数约束(如边界限定和多重边界)、通配符应用(PECS原则)以及类型擦除的应对策略。此外,还展示了泛型在通用DAO接口、事件总线等实际场景的应用,并总结了命名规范、边界控制等最佳实践。最后探讨了扩展知识,如通过反射获取泛型参数类型。合理运用泛型可大幅提升代码健壮性和可维护性,建议结合IDE工具和单元测试优化使用。
14 1
|
8天前
|
重学Java基础篇—Java Object类常用方法深度解析
Java中,Object类作为所有类的超类,提供了多个核心方法以支持对象的基本行为。其中,`toString()`用于对象的字符串表示,重写时应包含关键信息;`equals()`与`hashCode()`需成对重写,确保对象等价判断的一致性;`getClass()`用于运行时类型识别;`clone()`实现对象复制,需区分浅拷贝与深拷贝;`wait()/notify()`支持线程协作。此外,`finalize()`已过时,建议使用更安全的资源管理方式。合理运用这些方法,并遵循最佳实践,可提升代码质量与健壮性。
19 1
|
22天前
|
课时12:Java数据类型划分(字符型)
课时12介绍了Java中的字符型数据(char),包括字符的定义、与int类型的转换及应用。通过范例展示了如何观察字符、编码转换、大小写字母互转、保存中文字符,以及Java中字符处理的灵活性。字符型使用单引号声明,可与int互相转换,支持Unicode编码,能表示任何文字,包括中文。虽然实际开发中直接操作字符型的情况不多,但理解其特性有助于更好地编程。
47 17
|
21天前
|
java变量与数据类型:整型、浮点型与字符类型
### Java数据类型全景表简介 本文详细介绍了Java的基本数据类型和引用数据类型,涵盖每种类型的存储空间、默认值、取值范围及使用场景。特别强调了`byte`、`int`、`long`、`float`、`double`等基本类型在不同应用场景中的选择与优化,如文件流处理、金融计算等。引用数据类型部分则解析了`String`、数组、类对象、接口和枚举的内存分配机制。
49 15
|
21天前
|
课时14:Java数据类型划分(初见String类)
课时14介绍Java数据类型,重点初见String类。通过三个范例讲解:观察String型变量、&quot;+&quot;操作符的使用问题及转义字符的应用。String不是基本数据类型而是引用类型,但使用方式类似基本类型。课程涵盖字符串连接、数学运算与字符串混合使用时的注意事项以及常用转义字符的用法。
|
21天前
|
课时13:Java数据类型划分(布尔型)
观察布尔型的操作。布尔是一位数学家的名字,这个布尔发明了两个单词:True、False(一个表示真一个表示假)。一般布尔类型都只表示逻辑的计算结果。
Java中的基本数据类型及其包装类
Java中的基本数据类型及其包装类
JAVA基本数据类型的包装类
JAVA基本数据类型的包装类
107 0