决策树算法

简介: 决策树算法

谷歌笔记本(可选)


from google.colab import drive
drive.mount("/content/drive")
output

Mounted at /content/drive

决策树


  • 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据
  • 缺点:可能产生过度匹配的问题
  • 适用数据类型:数值型和标称型

决策树的一般流程

(1)收集数据

(2)准备数据

(3)分析数据

(4)训练算法

(5)测试算法

(6)使用算法

信息增益

# 计算给定数据集的香农熵
from math import log
def calcShannonEnt(dataSet):
  numEntries = len(dataSet)
  labelCounts = {}
  for featVec in dataSet:
    currentLabel = featVec[-1]
    if currentLabel not in labelCounts.keys():
      labelCounts[currentLabel] = 0
    labelCounts[currentLabel] += 1
  shannonEnt = 0
  for key in labelCounts:
    prob = float(labelCounts[key]) / numEntries
    shannonEnt -= prob * log(prob, 2)
  return shannonEnt
def createDataSet():
  dataSet = [[1, 1, 'yes'],
             [1, 1, 'yes'],
             [1, 0, 'no'],
             [0, 1, 'no'],
             [0, 1, 'no']]
  labels = ['no surfacing', 'flippers']
  return dataSet, labels
myDat, labels = createDataSet()
myDat, labels
output

([[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']],
 ['no surfacing', 'flippers'])
calcShannonEnt(myDat)
output
0.9709505944546686
myDat[0][-1] = 'maybe'
myDat

划分数据集

# 按照给定特征划分数据集
def splitDataSet(dataSet, axis, value):
  retDataSet = []
  for featVec in dataSet:
    if featVec[axis] == value:
      reducedFeatVec = featVec[:axis]
      reducedFeatVec.extend(featVec[axis+1:])
      retDataSet.append(reducedFeatVec)
  return retDataSet
myDat, labels = createDataSet()
splitDataSet(myDat, 0, 1)

output

[[1, 'yes'], [1, 'yes'], [0, 'no']]

myDat, labels = createDataSet()
calcShannonEnt(myDat)

output

0.9709505944546686

# 选择最好的数据集划分方式
def chooseBestFeatureToSplit(dataSet):
  numFeatures = len(dataSet[0]) - 1   # 2
  baseEntropy = calcShannonEnt(dataSet)  # 0.9709505944546686
  bestInfoGain = 0
  bestFeature = -1
  for i in range(numFeatures):
    featList = [example[i] for example in dataSet]
    uniqueVals = set(featList)
    newEntropy = 0
    for value in uniqueVals:
      subDataSet = splitDataSet(dataSet, i, value)
      prob = len(subDataSet) / float(len(dataSet))
      newEntropy += prob * calcShannonEnt(subDataSet)
    infoGain = baseEntropy - newEntropy
    if(infoGain > bestInfoGain):
      bestInfoGain = infoGain
      bestFeature = i
  return bestFeature
chooseBestFeatureToSplit(myDat)

output

0

递归构建决策树

import operator
 
def majorityCnt(classList):
  classCount={}
  for vote in classList:
    if vote not in classCount.keys():
      classCount[vote] = 0
    classCount[vote] += 1
  sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
  return sortedClassCount[0][0]
# 创建树的代码
def createTree(dataSet, labels):
  classList = [example[-1] for example in dataSet]
  if classList.count(classList[0]) == len(classList):
    return classList[0]
  if len(dataSet[0]) == 1:
    return majorityCnt(classList)
  bestFeat = chooseBestFeatureToSplit(dataSet)
  bestFeatLabel = labels[bestFeat]
  myTree = {bestFeatLabel:{}}
  del(labels[bestFeat])
  featValues = [example[bestFeat] for example in dataSet]
  uniqueVals = set(featValues)
  for value in uniqueVals:
    subLabels = labels[:]
    myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
  return myTree
myDat, labels = createDataSet()
myTree = createTree(myDat, labels)
myTree

output

{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}


使用Matplotlib注解绘制树形图


Matplotlib注解

# 使用文本注解绘制树节点
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
  createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
                          xytext=centerPt, textcoords='axes fraction',
                          va='center', ha='center', bbox=nodeType, arrowprops=arrow_args)
def createPlot():
  fig = plt.figure(1, facecolor='white')
  fig.clf()
  createPlot.ax1 = plt.subplot(111, frameon=False)
  plotNode('leaf01', (0.5, 0.1), (0.1, 0.5), decisionNode)
  plotNode('leaf02', (0.8, 0.1), (0.3, 0.8), leafNode)
  plt.show()
createPlot()

output

构造注解树

# 获取叶节点的数目
def getNumLeafs(myTree):
  numLeafs = 0
  firstStr = list(myTree.keys())[0]
  secondDict = myTree[firstStr]
  for key in secondDict.keys():
    if type(secondDict[key]).__name__ == 'dict':
      numLeafs += getNumLeafs(secondDict[key])
    else:
      numLeafs += 1
  return numLeafs
# 获取树的层数
def getTreeDepth(myTree):
  maxDepth = 0
  firstStr = list(myTree.keys())[0]
  secondDict = myTree[firstStr]
  for key in secondDict.keys():
    if type(secondDict[key]).__name__=='dict':
      thisDepth = 1 + getTreeDepth(secondDict[key])
    else:
      thisDepth = 1
    if thisDepth > maxDepth:
      maxDepth = thisDepth
  return maxDepth
def retrieveTree(i):
  listOfTrees = [{'no surfacing': {0:'no', 1:{'flippers':{0:'no',1:'yes'}}}},
                 {'no surfacing':{0:'no', 1:{'flippers':{0:{'head':{0:'no', 1:'yes'}}, 1:'no'}}}}]
  return listOfTrees[i]
retrieveTree(1)

output

{'no surfacing': {0: 'no',

 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}


myTree = retrieveTree(0)
getNumLeafs(myTree)

output

3

getTreeDepth(myTree)

output

2

def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
def plotTree(myTree, parentPt, nodeTxt):
    numLeafs = getNumLeafs(myTree)
    depth = getTreeDepth(myTree)
    firstStr = list(myTree.keys())[0]
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':
            plotTree(secondDict[key],cntrPt,str(key))
        else:
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
    plotTree(inTree, (0.5,1.0), '')
    plt.show()
myTree = retrieveTree(0)
createPlot(myTree)

output

myTree['no surfacing'][2] = 'maybe'
myTree

output

{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}, 2: 'maybe'}}

createPlot(myTree)

output


测试和存储分类器


测试算法:使用决策树执行分类

# 使用决策树的分类函数
def classify(inputTree, featLabels, testVec):
  firstStr = list(inputTree.keys())[0]
  secondDict = inputTree[firstStr]
  featIndex = featLabels.index(firstStr)
  for key in secondDict.keys():
    if testVec[featIndex] == key:
      if type(secondDict[key]).__name__ == 'dict':
        classLabel = classify(secondDict[key], featLabels, testVec)
      else:
        classLabel = secondDict[key]
  return classLabel
myDat, labels = createDataSet()
myTree = retrieveTree(0)
classify(myTree, labels, [1,0])

output

'no'

classify(myTree, labels, [1,1])

output

'yes'

使用算法:决策树的存储

# 使用pickle模块存储决策树
def storeTree(inputTree,filename):
    import pickle
    fw = open(filename,'wb')
    pickle.dump(inputTree,fw)
    fw.close()
 
def grabTree(filename):
    import pickle
    fr = open(filename, 'rb')
    return pickle.load(fr)
myTree

output

{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

storeTree(myTree, 'classifierStorage.txt')
 
grabTree('classifierStorage.txt')

output

{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
目录
相关文章
|
4月前
|
存储 机器学习/深度学习 算法
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty  敏感词
|
4月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
134 17
|
4月前
|
存储 监控 算法
局域网上网记录监控的 C# 基数树算法高效检索方案研究
在企业网络管理与信息安全领域,局域网上网记录监控是维护网络安全、规范网络行为的关键举措。随着企业网络数据量呈指数级增长,如何高效存储和检索上网记录数据成为亟待解决的核心问题。基数树(Trie 树)作为一种独特的数据结构,凭借其在字符串处理方面的卓越性能,为局域网上网记录监控提供了创新的解决方案。本文将深入剖析基数树算法的原理,并通过 C# 语言实现的代码示例,阐述其在局域网上网记录监控场景中的具体应用。
120 7
|
3月前
|
机器学习/深度学习 算法 搜索推荐
决策树算法如何读懂你的购物心理?一文看懂背后的科学
"你为什么总能收到刚好符合需求的商品推荐?你有没有好奇过,为什么刚浏览过的商品就出现了折扣通知?
|
6月前
|
人工智能 算法 语音技术
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
清华大学与腾讯联合推出的Video-T1技术,通过测试时扩展(TTS)和Tree-of-Frames方法,显著提升视频生成的连贯性与文本匹配度,为影视制作、游戏开发等领域带来突破性解决方案。
186 4
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
|
6月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
147 3
 算法系列之数据结构-Huffman树
|
8月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
255 3
|
10月前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
232 2
|
11月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
11月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
126 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)

热门文章

最新文章