【python分析实战】成本:揭示电商平台月度开支与成本结构占比 - 过于详细 【收藏】

简介: 【python分析实战】成本:揭示电商平台月度开支与成本结构占比 - 过于详细 【收藏】

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。

会一些的技术:数据分析、算法、SQL、大数据相关、python

欢迎加入社区:码上找工作

作者专栏每日更新:

LeetCode解锁1000题: 打怪升级之旅

python数据分析可视化:企业实战案例

备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉

背景

一家电商公司希望分析其过去一年的各项成本,包括材料、劳动力、市场营销、固定成本和杂项支出。目标是了解成本结构,识别成本控制和优化的机会。

实施步骤

首先,收集并整理全年各月份的成本数据。

使用Python的数据分析和可视化库(如Pandas和Matplotlib)进行分析或者其他工具

对生成的图表进行深入分析,提取关键洞察。

成本数据

每个月提供了五种成本类型(材料、劳动力、市场营销、固定成本和杂项支出)的具体数字和对应的用量,并计算了每个月的总成本

import pandas as pd
import numpy as np
# 设置随机数种子以确保数据的一致性
np.random.seed(42)
# 创建模拟的月份数据
months = ['January', 'February', 'March', 'April', 'May', 'June',
          'July', 'August', 'September', 'October', 'November', 'December']
# 创建不同成本类型的模拟数据,包括总成本和用量
data = {
    'Month': months,
    'Material Cost ($)': np.random.randint(10000, 30000, size=12),
    'Material Quantity': np.random.randint(100, 300, size=12),
    'Labor Cost ($)': np.random.randint(8000, 25000, size=12),
    'Labor Hours': np.random.randint(200, 500, size=12),
    'Marketing Cost ($)': np.random.randint(5000, 15000, size=12),
    'Marketing Campaigns': np.random.randint(1, 5, size=12),
    'Fixed Cost ($)': np.random.randint(4000, 8000, size=12),
    'Fixed Assets': np.random.randint(10, 20, size=12)
}
# 转换为DataFrame
cost_df = pd.DataFrame(data)
pd.set_option('expand_frame_repr', False)
print(cost_df)

初步的分析

分析方法: 初始分析仅涉及计算每个月的总成本和成本构成,并通过简单的趋势图展示。

成本构成组成图,可以看到主要的成本应该是材料费用,但是具体占比多少其实还看不清楚,然后波动趋势的话 因为组合型柱形图没法做每个月的对比

成本构成趋势图,如果仔细看的话,可以看到材料费用的波动比较大,但是原因是什么不清楚,因为费用跟使用情况有关系

这个是一个热力图,可以看到材料和市场活动的波动会比较大,导致的总成本的波动也比较大

问题:

  • 缺乏细节:总成本的展示忽略了成本结构的复杂性,无法识别哪些成本类型对总支出的贡献最大。
  • 无法识别趋势:没有展示各成本类型随时间的变化趋势,难以分析季节性变化或特定事件对成本的影响。
  • 决策困难:缺少深入分析,管理层难以基于这些数据做出有针对性的成本控制或优化决策。

代码

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
np.random.seed(42)
# Creating DataFrame from provided data
cost_data = {
    'Month': months,
    'Material Cost ($)': np.random.randint(10000, 30000, size=12),
    'Labor Cost ($)': np.random.randint(8000, 25000, size=12),
    'Marketing Cost ($)': np.random.randint(5000, 15000, size=12),
    'Fixed Cost ($)': np.random.randint(4000, 8000, size=12),
}
cost_df = pd.DataFrame(cost_data)
cost_df['Total Cost'] = cost_df['Material Cost ($)']+cost_df['Labor Cost ($)']+cost_df['Marketing Cost ($)']+cost_df['Fixed Cost ($)']
plt.figure(figsize=(12, 6))
plt.plot(cost_df.index, cost_df['Total Cost'], marker='o')
plt.title('Monthly Total Cost - Unclear Visualization')
plt.ylabel('Cost ($)')
plt.xlabel('Month')
plt.xticks()
plt.tight_layout()
plt.show()
# Set 'Month' as index
cost_df.set_index('Month', inplace=True)
# 1. Stacked Bar Chart for Monthly Costs
cost_df.plot(kind='bar', stacked=True, figsize=(10, 6))
plt.title('Stacked Bar Chart of Monthly Costs')
plt.ylabel('Amount ($)')
plt.xticks(rotation=45)
plt.legend(title='Cost Type')
plt.tight_layout()
plt.show()
# 2. Trend Line Chart for Each Cost Type
plt.figure(figsize=(12, 6))
for column in cost_df.columns:
    plt.plot(cost_df.index, cost_df[column], marker='o', label=column)
plt.title('Trend Lines for Each Cost Type')
plt.xticks(rotation=45)
plt.ylabel('Amount ($)')
plt.legend()
plt.tight_layout()
plt.show()
# 3. Heatmap for Monthly Costs
# Creating a new DataFrame suitable for heatmap
heatmap_data = cost_df.T  # Transpose to get cost types as rows and months as columns
plt.figure(figsize=(12, 6))
sns.heatmap(heatmap_data, cmap="YlGnBu", annot=True, fmt="d")
plt.title('Heatmap of Monthly Costs')
plt.xlabel('Month')
plt.ylabel('Cost Type')
plt.tight_layout()
plt.show()

改进后的分析

为了克服这些限制,我们需要采用更合理的数据可视化方法,首先是查看各项占比,组合柱形图如果不展示各项占比,这个图的会变得很难解读,所以从图中可以看出材料费用的占比在30%-50%左右,还有就是劳动力成本,这两个成本需要重点分析。

代码

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
np.random.seed(42)  # 确保结果可复现
months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
# 使用提供的数据创建DataFrame
cost_data = {
    'Month': months,
    'Material Cost ($)': np.random.randint(10000, 30000, size=12),
    'Labor Cost ($)': np.random.randint(8000, 25000, size=12),
    'Marketing Cost ($)': np.random.randint(5000, 15000, size=12),
    'Fixed Cost ($)': np.random.randint(4000, 8000, size=12),
}
cost_df = pd.DataFrame(cost_data)
# 计算每个月总成本
cost_df['Total Cost ($)'] = cost_df.drop('Month', axis=1).sum(axis=1)
# 计算各成本项占总成本的比例
for column in cost_df.columns[1:-1]:  # 排除'Month'和'Total Cost ($)'
    cost_df[f'{column} Percentage'] = (cost_df[column] / cost_df['Total Cost ($)']) * 100
# 绘制各成本项的柱状图
cost_df.set_index('Month').iloc[:, :4].plot(kind='bar', stacked=True, figsize=(14, 7))
plt.title('Monthly Costs with Percentages')
plt.ylabel('Cost ($)')
# 添加占比标签
for i, month in enumerate(cost_df['Month']):
    total_cost = cost_df.loc[i, 'Total Cost ($)']
    cumulative_height = 0
    for column in cost_df.columns[1:5]:  # 选择四个成本列
        cost = cost_df.loc[i, column]
        percentage = (cost / total_cost) * 100
        label_y_position = cumulative_height + cost / 2  # 计算标签的y位置
        plt.text(i, label_y_position, f'{percentage:.1f}%', ha='center', color='white', fontsize=9)
        cumulative_height += cost
plt.xticks(rotation=45)
plt.legend(title='Cost Type')
plt.tight_layout()
plt.show()

接着需要去掉用量的影响,因为成本金额大不一定有问题,可能是量也比较大,我们构建一个单位成本的指标,单位成本是指对应成本总额除以相应的量度(如材料成本除以材料量,劳动力成本除以工时等。

这里是单位材料成本和单位劳动力成本,可以看到在3月、10月的单位材料成本大涨,经过分析发现这两个月进入了一批新的材料比以往的采购价都更贵。发现单位工时成本在2月和12月上涨比较多,是因为这两个月招聘了高技术的人才,之后下降是由于上线了平台系统提高了整体的工作效率。

单位成本代码

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
# 设置随机数种子以确保数据的一致性
np.random.seed(42)
# 创建模拟的月份和成本数据
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
data = {
    'Month': months,
    'Material Cost ($)': np.random.randint(10000, 30000, size=12),
    'Material Quantity': np.random.randint(100, 300, size=12),
    'Labor Cost ($)': np.random.randint(8000, 25000, size=12),
    'Labor Hours': np.random.randint(200, 500, size=12),
}
cost_df = pd.DataFrame(data)
cost_df['Unit Material Cost ($)'] = cost_df['Material Cost ($)'] / cost_df['Material Quantity']
cost_df['Unit Labor Cost ($)'] = cost_df['Labor Cost ($)'] / cost_df['Labor Hours']
# 绘制没有网格线和边框的折线图
plt.figure(figsize=(10, 6))
plt.plot(cost_df['Month'], cost_df['Unit Material Cost ($)'], label='Unit Material Cost ($)')
plt.plot(cost_df['Month'], cost_df['Unit Labor Cost ($)'], label='Unit Labor Cost ($)')
plt.title('Monthly Unit Cost Analysis')
plt.xlabel('Month')
plt.ylabel('Unit Cost ($)')
plt.legend()
# 移除边框
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.gca().spines['bottom'].set_visible(False)
plt.gca().spines['left'].set_visible(False)
# 移除网格线
plt.grid(False)
plt.show()

总结

除了要在展示的时候能更清晰的从图中看出具体的数值外,我们在分析成本的时候需要去掉用量的因素的影响,单位成本是一个常见的分析指标


欢迎关注微信公众号 数据分析螺丝钉

相关文章
|
13天前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
107 0
|
21天前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
213 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
21天前
|
数据采集 监控 数据库
Python异步编程实战:爬虫案例
🌟 蒋星熠Jaxonic,代码为舟的星际旅人。从回调地狱到async/await协程天堂,亲历Python异步编程演进。分享高性能爬虫、数据库异步操作、限流监控等实战经验,助你驾驭并发,在二进制星河中谱写极客诗篇。
Python异步编程实战:爬虫案例
|
21天前
|
Cloud Native 算法 API
Python API接口实战指南:从入门到精通
🌟蒋星熠Jaxonic,技术宇宙的星际旅人。深耕API开发,以Python为舟,探索RESTful、GraphQL等接口奥秘。擅长requests、aiohttp实战,专注性能优化与架构设计,用代码连接万物,谱写极客诗篇。
Python API接口实战指南:从入门到精通
|
22天前
|
数据采集 存储 XML
Python爬虫技术:从基础到实战的完整教程
最后强调: 父母法律法规限制下进行网络抓取活动; 不得侵犯他人版权隐私利益; 同时也要注意个人安全防止泄露敏感信息.
519 19
|
13天前
|
存储 Java 调度
Python定时任务实战:APScheduler从入门到精通
APScheduler是Python强大的定时任务框架,通过触发器、执行器、任务存储和调度器四大组件,灵活实现各类周期性任务。支持内存、数据库、Redis等持久化存储,适用于Web集成、数据抓取、邮件发送等场景,解决传统sleep循环的诸多缺陷,助力构建稳定可靠的自动化系统。(238字)
164 1
|
24天前
|
设计模式 人工智能 API
AI智能体开发实战:17种核心架构模式详解与Python代码实现
本文系统解析17种智能体架构设计模式,涵盖多智能体协作、思维树、反思优化与工具调用等核心范式,结合LangChain与LangGraph实现代码工作流,并通过真实案例验证效果,助力构建高效AI系统。
265 7
|
24天前
|
JSON 缓存 供应链
电子元件 item_search - 按关键字搜索商品接口深度分析及 Python 实现
本文深入解析电子元件item_search接口的设计逻辑与Python实现,涵盖参数化筛选、技术指标匹配、供应链属性过滤及替代型号推荐等核心功能,助力高效精准的电子元器件搜索与采购决策。
|
索引 Python
(四)Python的简单结构
1.使用列表 在python内建了一个成为列表的结构。字符串是特殊列表(但不是真正的列表,不能用列表的函数方法),我们可以简单的将它看成一系列的长度为1的子字符组成的特殊列表。
168 0
(四)Python的简单结构
|
1月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
204 102

热门文章

最新文章

  • 1
    Python零基础爬取东方财富网股票行情数据指南
    224
  • 2
    解析Python爬虫中的Cookies和Session管理
    167
  • 3
    Python日志模块配置:从print到logging的优雅升级指南
    127
  • 4
    【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
    93
  • 5
    (Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
    107
  • 6
    (Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
    202
  • 7
    (numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
    75
  • 8
    (numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
    203
  • 9
    (Python基础)新时代语言!一起学习Python吧!(四):dict字典和set类型;切片类型、列表生成式;map和reduce迭代器;filter过滤函数、sorted排序函数;lambda函数
    67
  • 10
    (Python基础)新时代语言!一起学习Python吧!(三):IF条件判断和match匹配;Python中的循环:for...in、while循环;循环操作关键字;Python函数使用方法
    101
  • 推荐镜像

    更多