PyTorch与深度学习

简介: PyTorch与深度学习

1.深度学习框架PyTorch

PyTorch概念

PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理应用程序。PyTorch既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络。除了Facebook外,它已经被Twitter、CMU和Salesforce等机构采用。

本文将介绍PyTorch的基本概念和使用方法,并通过实例演示如何使用PyTorch构建和训练一个简单的卷积神经网络。

PyTorch安装

可以通过PyTorch官方网站(官网地址:https://pytorch.org/)提供的安装指南安装PyTorch。安装完成后,你可以使用以下代码导入PyTorch:

import torch

PyTorch的核心是张量(Tensor),它是一个多维数组,类似于NumPy的ndarray。你可以使用torch.Tensor()函数创建一个张量。例如,以下代码创建了一个形状为(3, 2)的张量:

import torch
 
# 创建一个形状为(3, 2)的张量
x = torch.Tensor([[1, 2], [3, 4], [5, 6]])
print(x)
tensor([[1., 2.],
        [3., 4.],
        [5., 6.]])


PyTorch张量操作的函数

PyTorch还提供了许多用于张量操作的函数,例如加法、减法、乘法和除法等。以下代码演示了如何使用这些函数进行张量操作:

import torch
 
# 创建两个张量
x = torch.Tensor([[1, 2], [3, 4], [5, 6]])
y = torch.Tensor([[7, 8], [9, 10], [11, 12]])
 
# 加法
z1 = x + y
# 减法
z2 = x - y
# 乘法
z3 = x * y
# 除法
z4 = x / y
 
print(z1)
print(z2)
print(z3)
print(z4)

输出结果为:

tensor([[ 8., 10.],
        [12., 14.],
        [16., 18.]])
tensor([[-6., -6.],
        [-6., -6.],
        [-6., -6.]])
tensor([[ 7., 16.],
        [27., 40.],
        [55., 72.]])
tensor([[0.1429, 0.2500],
        [0.3333, 0.4000],
        [0.4545, 0.5000]])


PyTorch构建深度学习模型的函数和类

除了基本的张量操作,PyTorch还提供了许多用于构建深度学习模型的函数和类。例如,以下代码演示了如何使用PyTorch构建一个简单的卷积神经网络:

import torch
import torch.nn as nn
 
# 定义一个卷积神经网络
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.relu = nn.ReLU()
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
 
    def forward(self, x):
        x = self.conv1(x)
        x = self.relu(x)
        x = self.pool(x)
        x = self.conv2(x)
        x = self.relu(x)
        x = self.pool(x)
        x = x.view(-1, 16 * 4 * 4)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.relu(x)
        x = self.fc3(x)
        return x
 
# 创建一个模型实例
net = Net()
print(net)


输出结果为:

Net(
  (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
  (relu): ReLU()
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=256, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)

以上就是使用PyTorch构建和训练深度学习模型的基本步骤。


深度学习框架PyTorch是一个开源的机器学习库,它提供了一个灵活的深度学习框架,可以帮助研究人员和开发人员快速构建和训练深度学习模型。


当然,PyTorch还提供了许多其他功能和工具,例如自动求导、优化器和数据加载器等,可以帮助你更高效地构建和训练深度学习模型。如果你想深入了解更多关于PyTorch的知识,可以参考官方文档和教程。

2.深度学习的程序实例

以下是一个简单的深度学习程序实例,使用PyTorch构建和训练一个卷积神经网络来对手写数字进行分类。

首先,我们需要导入必要的库:

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms

接下来,我们需要定义一些超参数:

# 超参数
num_epochs = 5
batch_size = 100
learning_rate = 0.001

然后,我们需要下载并准备MNIST数据集:

# 下载并准备MNIST数据集
train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())
 
# 数据加载器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

接下来,我们定义一个卷积神经网络模型:

# 定义卷积神经网络模型
class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.layer2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.fc = nn.Linear(7*7*32, 10)
 
    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.reshape(out.size(0), -1)
        out = self.fc(out)
        return out
 
model = ConvNet()
 

接下来,我们定义损失函数和优化器:

# 损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

然后,我们开始训练模型:

# 训练模型
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        # 前向传播
        outputs = model(images)
        loss = criterion(outputs, labels)
 
        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
 
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

最后,我们测试模型并输出准确率:

# 测试模型
model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
 
    print('测试集准确率: {} %'.format(100 * correct / total))

目录
打赏
0
0
0
0
30
分享
相关文章
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
205 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
PyTorch PINN实战:用深度学习求解微分方程
物理信息神经网络(PINN)是一种将深度学习与物理定律结合的创新方法,特别适用于微分方程求解。传统神经网络依赖大规模标记数据,而PINN通过将微分方程约束嵌入损失函数,显著提高数据效率。它能在流体动力学、量子力学等领域实现高效建模,弥补了传统数值方法在高维复杂问题上的不足。尽管计算成本较高且对超参数敏感,PINN仍展现出强大的泛化能力和鲁棒性,为科学计算提供了新路径。文章详细介绍了PINN的工作原理、技术优势及局限性,并通过Python代码演示了其在微分方程求解中的应用,验证了其与解析解的高度一致性。
33 5
PyTorch PINN实战:用深度学习求解微分方程
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
94 7
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
837 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
485 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
97 1
🎓PyTorch深度学习入门课:编程小白也能玩转的高级数据分析术
踏入深度学习领域,即使是编程新手也能借助PyTorch这一强大工具,轻松解锁高级数据分析。PyTorch以简洁的API、动态计算图及灵活性著称,成为众多学者与工程师的首选。本文将带你从零开始,通过环境搭建、构建基础神经网络到进阶数据分析应用,逐步掌握PyTorch的核心技能。从安装配置到编写简单张量运算,再到实现神经网络模型,最后应用于图像分类等复杂任务,每个环节都配有示例代码,助你快速上手。实践出真知,不断尝试和调试将使你更深入地理解这些概念,开启深度学习之旅。
91 1
解锁Python数据分析新技能,TensorFlow&PyTorch双引擎驱动深度学习实战盛宴
在数据驱动时代,Python凭借简洁的语法和强大的库支持,成为数据分析与机器学习的首选语言。Pandas和NumPy是Python数据分析的基础,前者提供高效的数据处理工具,后者则支持科学计算。TensorFlow与PyTorch作为深度学习领域的两大框架,助力数据科学家构建复杂神经网络,挖掘数据深层价值。通过Python打下的坚实基础,结合TensorFlow和PyTorch的强大功能,我们能在数据科学领域探索无限可能,解决复杂问题并推动科研进步。
106 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等