【YOLOv8改进-论文笔记】SCConv :即插即用的空间和通道重建卷积

简介: 该文介绍了一种针对卷积神经网络(CNN)的改进方法,名为SCConv,旨在减少计算冗余并提升特征学习效率。SCConv包含空间重构单元(SRU)和通道重构单元(CRU),分别处理空间和通道冗余。SRU利用分离-重构策略抑制空间冗余,而CRU通过分割-变换-融合策略减少通道冗余。SCConv可直接插入现有CNN架构中,实验结果显示,整合SCConv的模型能在降低复杂性和计算成本的同时保持或提高性能。此外,文章还展示了如何在YOLOv8中应用SCConv。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO目标检测创新改进与实战案例

摘要

卷积神经网络(CNNs)在各种计算机视觉任务中取得了显著的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取了冗余特征。近期的研究要么压缩训练有素的大规模模型,要么探索设计精良的轻量级模型。在本文中,我们尝试利用特征之间的空间和通道冗余性来进行CNN压缩,并提出了一种高效的卷积模块,称为SCConv(空间和通道重构卷积),以减少冗余计算并促进代表性特征学习。所提出的SCConv由两个单元组成:空间重构单元(SRU)和通道重构单元(CRU)。SRU使用分离-重构方法来抑制空间冗余,而CRU使用分割-变换-融合策略来减少通道冗余。此外,SCConv是一个即插即用的架构单元,可以直接用于替换各种卷积神经网络中的标准卷积。实验结果表明,嵌入SCConv的模型能够通过减少冗余特征,在显著降低复杂性和计算成本的同时,达到更好的性能。

创新点

  1. 空间重构单元(SRU)

  2. 通道重构单元(CRU)

如下图,SCConv 由两个单元组成,即空间重构单元 (SRU) 和信道重构单元 (CRU) ,两个单元按顺序排列。输入的特征 X 先经过 空间重构单元 ,得到空间细化的特征Xw 。再经过 通道重构单元 ,得到通道提炼的特征 Y 作为输出。SCConv 模块利用了特征之间的空间冗余和信道冗余,模块可以无缝集成到任何 CNN 框架中,减少特征之间的冗余,提高 CNN 特征的代表性。

yoloV8引入SCConv

新建ultralytics/nn/modules/conv/ScConv.py

import torch
import torch.nn.functional as F
import torch.nn as nn

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    # Pad to 'same' shape outputs
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


class Conv(nn.Module):
    # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))


class GroupBatchnorm2d(nn.Module):
    def __init__(self, c_num:int, 
                 group_num:int = 16, 
                 eps:float = 1e-10
                 ):
        super(GroupBatchnorm2d,self).__init__()
        assert c_num    >= group_num
        self.group_num  = group_num
        self.gamma      = nn.Parameter( torch.randn(c_num, 1, 1)    )
        self.beta       = nn.Parameter( torch.zeros(c_num, 1, 1)    )
        self.eps        = eps

    def forward(self, x):
        N, C, H, W  = x.size()
        x           = x.view(   N, self.group_num, -1   )
        mean        = x.mean(   dim = 2, keepdim = True )
        std         = x.std (   dim = 2, keepdim = True )
        x           = (x - mean) / (std+self.eps)
        x           = x.view(N, C, H, W)
        return x * self.gamma + self.beta


class SRU(nn.Module):
    def __init__(self,
                 oup_channels:int, 
                 group_num:int = 16,
                 gate_treshold:float = 0.5 
                 ):
        super().__init__()

        self.gn             = GroupBatchnorm2d( oup_channels, group_num = group_num )
        self.gate_treshold  = gate_treshold
        self.sigomid        = nn.Sigmoid()

    def forward(self,x):
        gn_x        = self.gn(x)
        w_gamma     = F.softmax(self.gn.gamma,dim=0)
        reweigts    = self.sigomid( gn_x * w_gamma )
        # Gate
        info_mask   = w_gamma>self.gate_treshold
        noninfo_mask= w_gamma<=self.gate_treshold
        x_1         = info_mask*reweigts * x
        x_2         = noninfo_mask*reweigts * x
        x           = self.reconstruct(x_1,x_2)
        return x

    def reconstruct(self,x_1,x_2):
        x_11,x_12 = torch.split(x_1, x_1.size(1)//2, dim=1)
        x_21,x_22 = torch.split(x_2, x_2.size(1)//2, dim=1)
        return torch.cat([ x_11+x_22, x_12+x_21 ],dim=1)

task.py 注册scconv

详见:https://blog.csdn.net/shangyanaf/article/details/135742727

相关文章
|
7月前
|
机器学习/深度学习 测试技术 Ruby
YOLOv8改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
YOLOv8改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
220 0
|
2月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
722 0
|
7月前
|
机器学习/深度学习 测试技术 Ruby
YOLOv5改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
YOLOv5改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
258 2
|
5月前
|
机器学习/深度学习 算法 计算机视觉
【YOLOv8改进 - 注意力机制】RCS-OSA :减少通道的空间对象注意力,高效且涨点
YOLOv8专栏探讨了YOLO系列的创新改进,提出RCS-YOLO模型,它在脑肿瘤检测中超越YOLOv6/v7/v8,精度提升1%,速度增快60%(达到114.8 FPS)。RCS-OSA模块结合RepVGG/ShuffleNet优点,通过通道重参数化和混洗优化卷积,提升速度和准确性。代码和论文可在提供的链接获取。
|
5月前
|
机器学习/深度学习 计算机视觉
【YOLOv10改进-卷积Conv】SCConv :即插即用的空间和通道重建卷积
YOLOv10专栏介绍了将Swin Transformer应用于目标检测的创新。Swin Transformer采用分层窗口结构,解决了视觉任务中的尺度变化问题,提供线性复杂度的效率提升。在图像分类、目标检测和语义分割任务中表现出色,超越先前最佳模型。YOLOv10结合Swin Transformer,利用其局部注意力机制和层次化设计,提升了检测性能。提供的代码片段展示了Swin Transformer模块,包括窗口划分、注意力计算和相对位置偏置。更多信息可在相关博客文章中找到。
|
5月前
|
机器学习/深度学习 安全 固态存储
【YOLOv8改进 - 注意力机制】LS-YOLO MSFE:新颖的多尺度特征提取模块 | 小目标/遥感
YOLO系列目标检测模型的新发展,LS-YOLO专为滑坡检测设计。它使用多尺度滑坡数据集(MSLD)和多尺度特征提取(MSFE)模块,结合ECA注意力,提升定位精度。通过改进的解耦头,利用膨胀卷积增强上下文信息。在滑坡检测任务中,LS-YOLO相对于YOLOv5s的AP提高了2.18%,达到97.06%。论文和代码已开源。
|
7月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进】 SPD-Conv空间深度转换卷积,处理低分辨率图像和小对象问题 (论文笔记+引入代码)
YOLO目标检测专栏探讨了CNN在低分辨率和小目标检测中的局限性,提出SPD-Conv新架构,替代步长卷积和池化层,通过空间到深度层和非步长卷积保持细粒度信息。创新点包括消除信息损失、通用设计和性能提升。YOLOv5和ResNet应用SPD-Conv后,在困难任务上表现优越。详情见YOLO有效改进系列及项目实战目录。
|
7月前
|
机器学习/深度学习 存储 计算机视觉
YOLOv5改进 | 2023主干篇 | EfficientViT替换Backbone(高效的视觉变换网络)
YOLOv5改进 | 2023主干篇 | EfficientViT替换Backbone(高效的视觉变换网络)
301 1
|
7月前
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | 2023 | SCConv空间和通道重构卷积(精细化检测,又轻量又提点)
YOLOv5改进 | 2023 | SCConv空间和通道重构卷积(精细化检测,又轻量又提点)
226 1
|
7月前
|
机器学习/深度学习 编解码 监控
YOLOv5改进 | 卷积篇 | SPD-Conv空间深度转换卷积(高效空间编码技术)
YOLOv5改进 | 卷积篇 | SPD-Conv空间深度转换卷积(高效空间编码技术)
923 0