Spark编程实验四:Spark Streaming编程

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: Spark编程实验四:Spark Streaming编程

一、目的与要求

1、通过实验掌握Spark Streaming的基本编程方法;

2、熟悉利用Spark Streaming处理来自不同数据源的数据。

3、熟悉DStream的各种转换操作。

4、熟悉把DStream的数据输出保存到文本文件或MySQL数据库中。

二、实验内容

1、参照教材示例,利用Spark Streaming对三种类型的基本数据源的数据进行处理。

2、参照教材示例,完成kafka集群的配置,利用Spark Streaming对Kafka高级数据源的数据进行处理,注意topic为你的姓名全拼。

3、参照教材示例,完成DStream的两种有状态转换操作。

4、参照教材示例,完成把DStream的数据输出保存到文本文件或MySQL数据库中。

三、实验步骤

1、利用Spark Streaming对三种类型的基本数据源的数据进行处理

(1)文件流

首先打开第一个终端作为数据流终端,创建一个logfile目录:

[root@bigdata zhc]# cd /home/zhc/mycode/sparkstreaming
[root@bigdata sparkstreaming]# mkdir logfile
[root@bigdata sparkstreaming]# cd logfile

然后打开第二个终端作为流计算终端,在“/logfile/”目录下面新建一个py程序:

[root@bigdata logfile]# vim FileStreaming.py

输入如下代码:

#/home/zhc/mycode/sparkstreaming/logfile/FileStreaming.py
 
from pyspark import SparkContext, SparkConf
from pyspark.streaming import StreamingContext
 
conf = SparkConf()
conf.setAppName('TestDStream')
conf.setMaster('local[2]')
sc = SparkContext(conf = conf)
ssc = StreamingContext(sc, 10)
lines = ssc.textFileStream('file:///home/zhc/mycode/sparkstreaming/logfile')
words = lines.flatMap(lambda line: line.split(' '))
wordCounts = words.map(lambda x : (x,1)).reduceByKey(lambda a,b:a+b)
wordCounts.pprint()
ssc.start()
ssc.awaitTermination()

保存该文件并执行如下命令:

[root@bigdata logfile]# spark-submit FileStreaming.py

然后我们进入数据流终端,在logfile目录下新建一个log2.txt文件,然后往里面输入一些英文语句后保存退出,再次切换到流计算终端,就可以看见打印出单词统计信息了。

(2)套接字流

1)使用套接字流作为数据源

继续在流计算端的sparkstreaming目录下创建一个socket目录,然后在该目录下创建一个NetworkWordCount.py程序:

[root@bigdata sparkstreaming]# mkdir socket
[root@bigdata sparkstreaming]# cd socket
[root@bigdata socket]# vim NetworkWordCount.py

输入如下代码:

#/home/zhc/mycode/sparkstreaming/socket/NetworkWordCount.py
 
from __future__ import print_function
import sys
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
 
if __name__ == "__main__":
    if len(sys.argv) != 3:
        print("Usage: NetworkWordCount.py <hostname> <port>", file=sys.stderr)
        exit(-1)
    sc = SparkContext(appName="PythonStreamingNetworkWordCount")
    ssc = StreamingContext(sc, 5)
    lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))
    counts = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).reduceByKey(lambda a, b: a+b)
    counts.pprint()
    ssc.start()
    ssc.awaitTermination()

再在数据流终端启动Socket服务器端:

[root@bigdata logfile]# nc -lk 9999

然后再进入流计算终端,执行如下代码启动流计算:

[root@bigdata socket]# spark-submit NetworkWordCount.py localhost 9999

然后在数据流终端内手动输入一行英文句子后回车,多输入几次,流计算终端就会不断执行词频统计并打印出信息。

2)使用Socket编程实现自定义数据源

下面我们再前进一步,把数据源头的产生方式修改一下,不要使用nc程序,而是采用自己编写的程序产生Socket数据源。在数据流终端执行以下命令,编写DataSourceSocket.py文件:

[root@bigdata logfile]# cd /home/zhc/mycode/sparkstreaming/socket
[root@bigdata socket]# vim DataSourceSocket.py

输入如下代码:

#/home/zhc/mycode/sparkstreaming/socket/DataSourceSocket.py
import socket
# 生成socket对象
server = socket.socket()
# 绑定ip和端口
server.bind(('localhost', 9999))
# 监听绑定的端口
server.listen(1)
while 1:
    # 为了方便识别,打印一个“我在等待”
    print("I'm waiting the connect...")
    # 这里用两个值接受,因为连接上之后使用的是客户端发来请求的这个实例
    # 所以下面的传输要使用conn实例操作
    conn,addr = server.accept()
    # 打印连接成功
    print("Connect success! Connection is from %s " % addr[0])
    # 打印正在发送数据
    print('Sending data...')
    conn.send('I love hadoop I love spark hadoop is good spark is fast'.encode())
    conn.close()
    print('Connection is broken.')

继续在数据流终端执行如下命令启动Socket服务端:

[root@bigdata socket]# spark-submit DataSourceSocket.py

再进入流计算终端,执行如下代码启动流计算:

[root@bigdata socket]# spark-submit NetworkWordCount.py localhost 9999

(3)RDD队列流

继续在sparkstreaming目录下新建rddqueue目录并在该目录下创建RDDQueueStream.py程序:

[root@bigdata sparkstreaming]# mkdir rddqueue
[root@bigdata sparkstreaming]# cd rddqueue
[root@bigdata rddqueue]# vim RDDQueueStream.py

输入如下代码:

#/home/zhc/mycode/sparkstreaming/rddqueue/RDDQueueStreaming.py
import time
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
if __name__ == "__main__":
    sc = SparkContext(appName="PythonStreamingQueueStream")
    ssc = StreamingContext(sc, 2)
    #创建一个队列,通过该队列可以把RDD推给一个RDD队列流
    rddQueue = []
    for i in range(5):
        rddQueue += [ssc.sparkContext.parallelize([j for j in range(1, 1001)], 10)]
        time.sleep(1)
    #创建一个RDD队列流
    inputStream = ssc.queueStream(rddQueue)
    mappedStream = inputStream.map(lambda x: (x % 10, 1))
    reducedStream = mappedStream.reduceByKey(lambda a, b: a + b)
    reducedStream.pprint()
    ssc.start()
    ssc.stop(stopSparkContext=True, stopGraceFully=True)


保存退出后,进入流计算终端再执行如下命令:

[root@bigdata rddqueue]# spark-submit RDDQueueStream.py

2、利用Spark Streaming对Kafka高级数据源的数据进行处理

此过程可以参照这篇博客的第四、五部分内容:

【数据采集与预处理】数据接入工具Kafka-CSDN博客

https://blog.csdn.net/Morse_Chen/article/details/135273370?spm=1001.2014.3001.5501

3、完成DStream的两种有状态转换操作

说明:上面的词频统计程序NetworkWordCount.py采取了无状态转换操作。

(1)滑动窗口转换操作

在socket目录下创建WindowedNetworkWordCount.py程序并输入如下代码:

#/home/zhc/mycode/sparkstreaming/socket/WindowedNetworkWordCount.py
from __future__ import print_function
import sys
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
if __name__ == "__main__":
    if len(sys.argv) != 3:
        print("Usage: WindowedNetworkWordCount.py <hostname> <port>", file=sys.stderr)
        exit(-1)
    sc = SparkContext(appName="PythonStreamingWindowedNetworkWordCount")
    ssc = StreamingContext(sc, 10)
    ssc.checkpoint("file:///home/zhc/mycode/sparkstreaming/socket/checkpoint")
    lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))
    counts = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).reduceByKeyAndWindow(lambda x, y: x + y, lambda x, y: x - y, 30, 10)
    counts.pprint()
    ssc.start()
    ssc.awaitTermination()

然后在数据流终端执执行如下命令运行nc程序:

[root@bigdata sparkstreaming]# cd /home/zhc/mycode/sparkstreaming/socket
[root@bigdata socket]# nc -lk 9999

然后再在流计算终端运行WindowedNetworkWordCount.py代码:

[root@bigdata socket]# spark-submit WindowedNetworkWordCount.py localhost 9999

这时,可以查看流计算终端内显示的词频动态统计结果,可以看到,随着时间的流逝,词频统计结果会发生动态变化。

(2)updateStateByKey操作

在“/home/zhc/mycode/sparkstreaming/”路径下新建目录“/stateful”,并在该目录下新建代码文件NetworkWordCountStateful.py。

[root@bigdata sparkstreaming]# mkdir stateful
[root@bigdata sparkstreaming]# cd stateful
[root@bigdata stateful]# vim NetworkWordCountStateful.py

输入如下代码:

#/home/zhc/mycode/sparkstreaming/stateful/NetworkWordCountStateful.py
from __future__ import print_function
import sys
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
if __name__ == "__main__":
    if len(sys.argv) != 3:
        print("Usage: NetworkWordCountStateful.py <hostname> <port>", file=sys.stderr)
        exit(-1)
    sc = SparkContext(appName="PythonStreamingStatefulNetworkWordCount")
    ssc = StreamingContext(sc, 1)
    ssc.checkpoint("file:///home/zhc/mycode/sparkstreaming/stateful/")           
    # RDD with initial state (key, value) pairs
    initialStateRDD = sc.parallelize([(u'hello', 1), (u'world', 1)]) 
    def updateFunc(new_values, last_sum):
        return sum(new_values) + (last_sum or 0) 
    lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))
    running_counts = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).updateStateByKey(updateFunc, initialRDD=initialStateRDD) 
    running_counts.pprint()
    ssc.start()
    ssc.awaitTermination()

在“数据源终端”,执行如下命令启动nc程序:

[root@bigdata stateful]# nc  -lk  9999

在“流计算终端”,执行如下命令提交运行程序:

[root@bigdata stateful]# spark-submit NetworkWordCountStateful.py localhost 9999

在数据源终端内手动输入一些单词并回车,再切换到流计算终端,可以看到已经输出了类似如下的词频统计信息:

4、把DStream的数据输出保存到文本文件或MySQL数据库中

(1)把DStream输出到文本文件中

在stateful目录下新建NetworkWordCountStatefulText.py文件:

[root@bigdata stateful]# vim NetworkWordCountStatefulText.py

输入如下代码:

#/home/zhc/mycode/sparkstreaming/stateful/NetworkWordCountStatefulText.py
from __future__ import print_function
import sys
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
if __name__ == "__main__":
    if len(sys.argv) != 3:
        print("Usage: NetworkWordCountStateful.py <hostname> <port>", file=sys.stderr)
        exit(-1)
    sc = SparkContext(appName="PythonStreamingStatefulNetworkWordCount")
    ssc = StreamingContext(sc, 1)
    ssc.checkpoint("file:///home/zhc/mycode/sparkstreaming/stateful/statefultext")
    # RDD with initial state (key, value) pairs
    initialStateRDD = sc.parallelize([(u'hello', 1), (u'world', 1)])
    def updateFunc(new_values, last_sum):
        return sum(new_values) + (last_sum or 0)
    lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))
    running_counts = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).updateStateByKey(updateFunc, initialRDD=initialStateRDD)
    running_counts.saveAsTextFiles("file:///home/zhc/mycode/sparkstreaming/stateful/statefultext/output")
    running_counts.pprint()
    ssc.start()
    ssc.awaitTermination()


在“数据源终端”,执行如下命令启动nc程序:

[root@bigdata stateful]# nc  -lk  9999

在“流计算终端”,执行如下命令提交运行程序:

[root@bigdata stateful]# spark-submit NetworkWordCountStatefulText.py localhost 9999

在数据源终端内手动输入一些单词并回车,再切换到流计算终端,可以看到已经输出了类似如下的词频统计信息:  

在“/home/zhc/mycode/sparkstreaming/stateful/statefultext”目录下便可查看到如下输出目录结果:

进入某个目录下,就可以看到类似part-00000的文件,里面包含了流计算过程的输出结果。

(2)把DStream写入到MySQL数据库中

首先启动MySQL数据库:

[root@bigdata stateful]# systemctl start mysqld.service
[root@bigdata stateful]# mysql -u root -p

然后创建spark数据库和wordcount表:

mysql> use spark;
mysql> create table wordcount (word char(20), count int(4));

然后再在终端安装python连接MySQL的模块:

[root@bigdata stateful]# pip3 install PyMySQL

在stateful目录并在该目录下创建NetworkWordCountStatefulDB.py文件:

[root@bigdata stateful]# vim NetworkWordCountStatefulDB.py

输入如下代码:

#/home/zhc/mycode/sparkstreaming/stateful/NetworkWordCountStatefulDB.py
from __future__ import print_function 
import sys 
import pymysql 
from pyspark import SparkContext
from pyspark.streaming import StreamingContext 
if __name__ == "__main__":
    if len(sys.argv) != 3:
        print("Usage: NetworkWordCountStateful <hostname> <port>", file=sys.stderr)
        exit(-1)
    sc = SparkContext(appName="PythonStreamingStatefulNetworkWordCount")
    ssc = StreamingContext(sc, 1)
    ssc.checkpoint("file:///home/zhc/mycode/sparkstreaming/stateful/statefuldb")  
    # RDD with initial state (key, value) pairs
    initialStateRDD = sc.parallelize([(u'hello', 1), (u'world', 1)]) 
    def updateFunc(new_values, last_sum):
        return sum(new_values) + (last_sum or 0) 
    lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))
    running_counts = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).updateStateByKey(updateFunc, initialRDD=initialStateRDD) 
    running_counts.pprint() 
    def dbfunc(records):
        db = pymysql.connect(host="localhost",user="root",password="MYsql123!",database="spark")
        cursor = db.cursor() 
        def doinsert(p):
            sql = "insert into wordcount(word,count) values ('%s', '%s')" % (str(p[0]), str(p[1]))
            try:
                cursor.execute(sql)
                db.commit()
            except:
                db.rollback()
        for item in records:
            doinsert(item) 
    def func(rdd):
        repartitionedRDD = rdd.repartition(3)
        repartitionedRDD.foreachPartition(dbfunc)
    running_counts.foreachRDD(func)
    ssc.start()
    ssc.awaitTermination()

在“数据源终端”,执行如下命令启动nc程序:

[root@bigdata stateful]# nc  -lk  9999

在“流计算终端”,执行如下命令提交运行程序:

[root@bigdata stateful]# spark-submit NetworkWordCountStatefulDB.py localhost 9999

在数据源终端内手动输入一些单词并回车,再切换到流计算终端,可以看到已经输出了类似如下的词频统计信息:

到MySQL终端便可以查看wordcount表中的内容:

mysql> select * from wordcount;

.......

四、结果分析与实验体会

       Spark Streaming是一个用于实时数据处理的流式计算框架,它基于 Apache Spark 平台,提供了高可靠性、高吞吐量和容错性强等特点。在进行 Spark Streaming 编程的实验中,掌握了Spark Streaming的基本编程方法;能够利用Spark Streaming处理来自不同数据源的数据以及DStream的各种转换操作;把DStream的数据输出保存到文本文件或MySQL数据库中。

       理解DStream:DStream 是 Spark Streaming 的核心概念,代表连续的数据流。在编程时,我们可以通过输入源(比如 Kafka、Flume、HDFS)创建一个 DStream 对象,并对其进行转换和操作。需要注意的是,DStream 是以时间片为单位组织数据的,因此在编写代码时要考虑时间窗口的大小和滑动间隔。

       适当设置批处理时间间隔:批处理时间间隔决定了 Spark Streaming 处理数据的粒度,过小的时间间隔可能导致频繁的任务调度和资源开销,而过大的时间间隔则可能造成数据处理延迟。因此,在实验中需要根据具体场景和需求来选择合适的时间间隔。

       使用合适的转换操作:Spark Streaming 提供了丰富的转换操作,如 map、flatMap、filter、reduceByKey 等,可以实现对数据流的转换和处理。在实验中,需要根据具体业务逻辑和需求选择合适的转换操作,并合理组合这些操作,以获取期望的结果。

       考虑容错性和数据丢失:Spark Streaming 具备很好的容错性,可以通过记录数据流的偏移量来保证数据不会丢失。在实验中,需要注意配置合适的容错机制,确保数据处理过程中的异常情况能够被恢复,并尽量避免数据丢失。

       优化性能和资源利用:对于大规模的实时数据处理任务,性能和资源利用是非常重要的。在实验中,可以通过调整并行度、合理设置缓存策略、使用广播变量等手段来提高性能和资源利用效率。

       总的来说,Spark Streaming 是一个功能强大且易用的流式计算框架,通过合理使用其提供的特性和操作,可以实现各种实时数据处理需求。在实验中,需要深入理解其原理和机制,并根据具体需求进行合理配置和优化,以获得良好的性能和结果。


目录
相关文章
|
8天前
|
分布式计算 Java Scala
如何处理 Spark Streaming 的异常情况?
【6月更文挑战第16天】如何处理 Spark Streaming 的异常情况?
18 4
|
1月前
|
存储 分布式计算 Hadoop
Spark编程实验一:Spark和Hadoop的安装使用
Spark编程实验一:Spark和Hadoop的安装使用
47 4
|
1月前
|
存储 消息中间件 分布式计算
Spark Streaming
Spark Streaming
32 1
|
1月前
|
SQL 分布式计算 关系型数据库
Spark编程实验三:Spark SQL编程
Spark编程实验三:Spark SQL编程
27 1
|
1月前
|
分布式计算 Shell 开发工具
Spark编程实验二:RDD编程初级实践
Spark编程实验二:RDD编程初级实践
33 1
|
分布式计算 Java Spark
Spark学习之编程进阶——累加器与广播(5)
Spark学习之编程进阶——累加器与广播(5) 1. Spark中两种类型的共享变量:累加器(accumulator)与广播变量(broadcast variable)。累加器对信息进行聚合,而广播变量用来高效分发较大的对象。 2. 共享变量是一种可以在Spark任务中使用的特殊类型的变量。 3. 累加器的用法: 通过在驱动器中调用SparkContex
1789 0
|
1月前
|
分布式计算 Hadoop 大数据
大数据技术与Python:结合Spark和Hadoop进行分布式计算
【4月更文挑战第12天】本文介绍了大数据技术及其4V特性,阐述了Hadoop和Spark在大数据处理中的作用。Hadoop提供分布式文件系统和MapReduce,Spark则为内存计算提供快速处理能力。通过Python结合Spark和Hadoop,可在分布式环境中进行数据处理和分析。文章详细讲解了如何配置Python环境、安装Spark和Hadoop,以及使用Python编写和提交代码到集群进行计算。掌握这些技能有助于应对大数据挑战。
|
7天前
|
存储 分布式计算 Hadoop
Spark和Hadoop都是大数据处理领域的重要工具
【6月更文挑战第17天】Spark和Hadoop都是大数据处理领域的重要工具
35 7
|
11天前
|
分布式计算 大数据 数据处理
Apache Spark在大数据处理中的应用
Apache Spark是大数据处理的热门工具,由AMPLab开发并捐赠给Apache软件基金会。它以内存计算和优化的执行引擎著称,提供比Hadoop更快的处理速度,支持批处理、交互式查询、流处理和机器学习。Spark架构包括Driver、Master、Worker Node和Executor,核心组件有RDD、DataFrame、Dataset、Spark SQL、Spark Streaming、MLlib和GraphX。文章通过代码示例展示了Spark在批处理、交互式查询和实时数据处理中的应用,并讨论了其优势(高性能、易用性、通用性和集成性)和挑战。【6月更文挑战第11天】
38 6
|
9天前
|
分布式计算 Hadoop 大数据
大数据技术:Hadoop与Spark的对比
【6月更文挑战第15天】**Hadoop与Spark对比摘要** Hadoop是分布式系统基础架构,擅长处理大规模批处理任务,依赖HDFS和MapReduce,具有高可靠性和生态多样性。Spark是快速数据处理引擎,侧重内存计算,提供多语言接口,支持机器学习和流处理,处理速度远超Hadoop,适合实时分析和交互式查询。两者在资源占用和生态系统上有差异,适用于不同应用场景。选择时需依据具体需求。