[transformer]论文实现:Attention Is All You Need(上)

简介: [transformer]论文实现:Attention Is All You Need(上)

论文:Attention Is All You Need

作者:Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin

时间:2017

参考文献:annotated-transformer

首先,transformer模型架构起初是由Vaswani等人在2017年一篇名为 "Attention is all you need"的论文中提出来的;其本质是利用self-attention去代替循环神经网络RNN和卷积神经网络CNN的一种sequence-to-sequence,encoder-decoder神经网络模型;

一、完整代码

这里使用基础tensorflow代码来构建一个transformer模型

import tensorflow as tf
import keras_nlp
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif']=['SimHei'] 
plt.rcParams['axes.unicode_minus']=False
# 准备dataset
dataset = tf.data.TextLineDataset('data.tsv')
def process_data(x):
    res = tf.strings.split(x, '\t')
    return res[1], res[3]
dataset.map(process_data).take(1).get_single_element()
dataset = dataset.map(process_data).batch(64)
vocab_chinese = keras_nlp.tokenizers.compute_word_piece_vocabulary(
    dataset.map(lambda x, y: x),
    vocabulary_size=20000,
    lowercase=True,
    strip_accents=True,
    split_on_cjk=True,
    reserved_tokens=["[PAD]", "[START]", "[END]", "[MASK]", "[UNK]"],
)
vocab_english = keras_nlp.tokenizers.compute_word_piece_vocabulary(
    dataset.map(lambda x, y: y),
    vocabulary_size=20000,
    lowercase=True,
    strip_accents=True,
    split_on_cjk=True,
    reserved_tokens=["[PAD]", "[START]", "[END]", "[MASK]", "[UNK]"],
)
chinese_tokenizer = keras_nlp.tokenizers.WordPieceTokenizer(vocabulary=vocab_chinese, oov_token="[UNK]")
english_tokenizer = keras_nlp.tokenizers.WordPieceTokenizer(vocabulary=vocab_english, oov_token="[UNK]")
def process_data_(ch, en, maxtoken=128):
    
    ch = chinese_tokenizer(ch)[:,:maxtoken]
    en = english_tokenizer(tf.strings.lower(en))[:,:maxtoken]
    
    ch = tf.concat([tf.ones(shape=(64,1), dtype='int32'), ch, tf.ones(shape=(64,1), dtype='int32')*2], axis=-1).to_tensor()
    en = tf.concat([tf.ones(shape=(64,1), dtype='int32'), en, tf.ones(shape=(64,1), dtype='int32')*2], axis=-1)
    en_inputs = en[:, :-1].to_tensor()  # Drop the [END] tokens
    en_labels = en[:, 1:].to_tensor() # Drop the [START] tokens
    return (ch, en_inputs), en_labels
dataset = dataset.batch(64).map(process_data_)
train_dataset = dataset.take(1000)
val_dataset = dataset.skip(500).take(300)
# 定义Transformer
def positional_encoding(length, depth):
    depth = depth/2
    
    positions = np.arange(length)[:, np.newaxis]     # (seq, 1)
    depths = np.arange(depth)[np.newaxis, :]/depth   # (1, depth)
    
    angle_rates = 1 / (10000**depths)         # (1, depth)
    angle_rads = positions * angle_rates      # (pos, depth)
    
    pos_encoding = np.concatenate([np.sin(angle_rads), np.cos(angle_rads)],axis=-1) 
    
    return tf.cast(pos_encoding, dtype=tf.float32)
class PositionEmbedding(tf.keras.layers.Layer):
    def __init__(self, vocabulary_size, d_model):
        super().__init__()
        self.d_model = d_model
        self.embedding = tf.keras.layers.Embedding(vocabulary_size, d_model, mask_zero=True)
        self.pos_encoding = positional_encoding(length=2048, depth=d_model)
    def compute_mask(self, *args, **kwargs):
        return self.embedding.compute_mask(*args, **kwargs)
    
    def call(self, x):
        length = tf.shape(x)[1]
        x = self.embedding(x)
        x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
        x = x + self.pos_encoding[tf.newaxis, :length, :]
        return x
class BaseAttention(tf.keras.layers.Layer):
    def __init__(self, **kwargs):
        super().__init__()
        self.mha = tf.keras.layers.MultiHeadAttention(**kwargs)
        self.layernorm = tf.keras.layers.LayerNormalization()
        self.add = tf.keras.layers.Add()
class CrossAttention(BaseAttention):
    def call(self, x, context):
        attn_output, attn_scores = self.mha(
            query=x,
            key=context,
            value=context,
            return_attention_scores=True)
        
        # Cache the attention scores for plotting later.
        self.last_attn_scores = attn_scores
        
        x = self.add([x, attn_output])
        x = self.layernorm(x)
        
        return x
class GlobalSelfAttention(BaseAttention):
    def call(self, x):
        attn_output = self.mha(
            query=x,
            value=x,
            key=x)
        x = self.add([x, attn_output])
        x = self.layernorm(x)
        return x
class CausalSelfAttention(BaseAttention):
    def call(self, x):
        attn_output = self.mha(
            query=x,
            value=x,
            key=x,
            use_causal_mask = True)
        x = self.add([x, attn_output])
        x = self.layernorm(x)
        return x
class FeedForward(tf.keras.layers.Layer):
    def __init__(self, d_model, dff, dropout_rate=0.1):
        super().__init__()
        self.seq = tf.keras.Sequential([
          tf.keras.layers.Dense(dff, activation='relu'),
          tf.keras.layers.Dense(d_model),
          tf.keras.layers.Dropout(dropout_rate)
        ])
        self.add = tf.keras.layers.Add()
        self.layer_norm = tf.keras.layers.LayerNormalization()
    
    def call(self, x):
        x = self.add([x, self.seq(x)])
        x = self.layer_norm(x) 
        return x
class EncoderLayer(tf.keras.layers.Layer):
    def __init__(self, *, d_model, num_heads, dff, dropout=0.1):
        super().__init__()
        self.self_attention = GlobalSelfAttention(
            num_heads = num_heads,
            key_dim = d_model,
            dropout = dropout
        )
        self.ffn = FeedForward(d_model, dff)
    def call(self, x):
        x = self.self_attention(x)
        x = self.ffn(x)
        return x
class Encoder(tf.keras.layers.Layer):
    def __init__(self, *, vocabulary_size, d_model, num_heads, dff, num_layers=6, dropout=0.1):
        super().__init__()
        # 给Encoder添加属性,便于辨识
        self.d_model = d_model
        self.num_layers = num_layers
        
        self.pos_embedding  = PositionEmbedding(vocabulary_size, d_model)
        self.encoder_layers = [EncoderLayer(d_model=d_model, num_heads=num_heads, dff=dff, dropout=dropout) for _ in range(num_layers)]
        self.dropout = tf.keras.layers.Dropout(dropout)
    def call(self, x):
        x = self.pos_embedding(x)
        x = self.dropout(x)
        for encoder_layer in self.encoder_layers:
            x = encoder_layer(x)
        return x
class DecoderLayer(tf.keras.layers.Layer):
    def __init__(self, *, d_model, num_heads, dff, dropout=0.1):
        super().__init__()
        self.causal_self_attention = CausalSelfAttention(num_heads=num_heads, key_dim=d_model, dropout=dropout)
        self.cross_attention = CrossAttention(num_heads=num_heads, key_dim=d_model, dropout=dropout)
        self.ffn = FeedForward(d_model, dff)
    def call(self, x, context):
        x = self.causal_self_attention(x)
        x = self.cross_attention(x, context)
        
        # 这里存储最后的注意力分数为了后面的画图
        self.last_attn_scores = self.cross_attention.last_attn_scores
        x = self.ffn(x)
        return x
class Decoder(tf.keras.layers.Layer):
    def __init__(self, *, vocabulary_size, d_model, num_heads, dff, num_layers=6, dropout=0.1):
        super(Decoder, self).__init__()
        self.d_model = d_model
        self.num_layers = num_layers
        self.pos_embedding = PositionEmbedding(vocabulary_size=vocabulary_size, d_model=d_model)
        self.decoder_layers = [DecoderLayer(d_model=d_model, num_heads=num_heads, dff=dff, dropout=dropout) for _ in range(num_layers)]
        self.dropout = tf.keras.layers.Dropout(rate=dropout)
        self.last_attn_scores = None
    def call(self, x, content):
        x = self.pos_embedding(x)
        x = self.dropout(x)
        for decoder_layer in self.decoder_layers:
            x = decoder_layer(x, content)
        self.last_attn_scores = self.decoder_layers[-1].last_attn_scores
        return x
class Transformer(tf.keras.Model):
    def __init__(self, *, num_layers, d_model, num_heads, dff, input_vocabulary_size, target_vocabulary_size, dropout=0.1):
        super().__init__()
        self.encoder = Encoder(vocabulary_size=input_vocabulary_size, d_model=d_model, num_layers=num_layers, num_heads=num_heads, dff=dff)
        self.decoder = Decoder(vocabulary_size=target_vocabulary_size, d_model=d_model, num_layers=num_layers, num_heads=num_heads, dff=dff)
        self.final_layer = tf.keras.layers.Dense(target_vocabulary_size, activation='softmax')
    def call(self, inputs):
        context, x = inputs
        context = self.encoder(context)
        x = self.decoder(x, context)
        logits = self.final_layer(x)
        # 不太理解
        try:
            # Drop the keras mask, so it doesn't scale the losses/metrics.
            # b/250038731
            del logits._keras_mask
        except AttributeError:
            pass
        return logits
# 定义超参
num_layers = 4
d_model = 128
dff = 512
num_heads = 8
dropout = 0.1
MAX_TOKENS = 128
# 准备模型
model = Transformer(num_layers=num_layers, d_model=d_model, num_heads=num_heads, dff=dff, input_vocabulary_size=chinese_tokenizer.vocabulary_size(), target_vocabulary_size=english_tokenizer.vocabulary_size(), dropout=dropout)
# build模型
(ch, input_en), output_en = dataset.take(1).get_single_element()
model.predict((ch, input_en)).shape
model.summary()
# 模型loss,optimizer定义
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
    def __init__(self, d_model, warmup_steps=4000):
        super().__init__()
        
        self.d_model = d_model
        self.d_model = tf.cast(self.d_model, tf.float32)
        
        self.warmup_steps = warmup_steps
    
    def __call__(self, step):
        step = tf.cast(step, dtype=tf.float32)
        arg1 = tf.math.rsqrt(step)
        arg2 = step * (self.warmup_steps ** -1.5)
        
        return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
learning_rate = CustomSchedule(d_model)
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9)
def masked_loss(label, pred):
    mask = label != 0
    loss_object = tf.keras.losses.SparseCategoricalCrossentropy(reduction='none')
    loss = loss_object(label, pred)
    
    mask = tf.cast(mask, dtype=loss.dtype)
    loss *= mask
    
    loss = tf.reduce_sum(loss)/tf.reduce_sum(mask)
    return loss
def masked_accuracy(label, pred):
    pred = tf.argmax(pred, axis=2)
    label = tf.cast(label, pred.dtype)
    match = label == pred
    
    mask = label != 0
    
    match = match & mask
    
    match = tf.cast(match, dtype=tf.float32)
    mask = tf.cast(mask, dtype=tf.float32)
    return tf.reduce_sum(match)/tf.reduce_sum(mask)
model.compile(
    loss=masked_loss,
    optimizer=optimizer,
    metrics=[masked_accuracy])
# 训练模型
model.fit(train_dataset, epochs=10, validation_data=val_dataset)
# 推理
class Translator(tf.Module):
    def __init__(self, tokenizers, transformer):
        self.tokenizers = tokenizers
        self.transformer = transformer
    
    def __call__(self, sentence, max_length=MAX_TOKENS):
        # sentence是中文,因此需要tokenizer并且加上<start>:1和<end>:2
        assert isinstance(sentence, tf.Tensor)
        if len(sentence.shape) == 0:
            sentence = sentence[tf.newaxis]
        sentence = self.tokenizers(sentence)
        sentence = tf.concat([tf.ones(shape=[sentence.shape[0], 1], dtype='int32'), sentence, tf.ones(shape=[sentence.shape[0], 1], dtype='int32')*2], axis=-1).to_tensor()
        
        encoder_input = sentence
        
        # As the output language is English, initialize the output with the
        start = tf.constant(1, dtype='int64')[tf.newaxis]
        end = tf.constant(2, dtype='int64')[tf.newaxis]
        
        # tf.TensorArray 类似于python中的列表
        output_array = tf.TensorArray(dtype=tf.int64, size=0, dynamic_size=True)
        # 在index=0的位置写入start
        output_array = output_array.write(0, start)
        
        for i in tf.range(max_length):
            output = tf.transpose(output_array.stack())
            predictions = self.transformer([encoder_input, output], training=False) # Shape `(batch_size, seq_len, vocab_size)`
            
            # 从seq_len中的最后一个维度选择last token
            predictions = predictions[:, -1:, :]  # Shape `(batch_size, 1, vocab_size)`.
            predicted_id = tf.argmax(predictions, axis=-1)
            
            # `predicted_id`加入到output_array中作为一个新的输入
            output_array = output_array.write(i+1, predicted_id[0])
            # 如果输出end就表明停止
            if predicted_id == end:
                break
        
        output = tf.transpose(output_array.stack())
        
        # 重新计算一下最外面的循环,得到最后的注意力得分
        self.transformer([encoder_input, output[:,:-1]], training=False)
        attention_weights = self.transformer.decoder.last_attn_scores
        lst = []
        for item in output[0].numpy():
            lst.append(english_tokenizer.vocabulary[item])
        
        translated_text = ' '.join(lst)
        translated_tokens = output[0]
        
        return translated_text, translated_tokens, attention_weights
translator = Translator(chinese_tokenizer, model)
# 普通推理
def print_translation(sentence, tokens, ground_truth):
    print(f'{"Input:":15s}: {sentence}')
    print(f'{"Prediction":15s}: {tokens}')
    print(f'{"Ground truth":15s}: {ground_truth}')
sentence = '我們試試看!'
ground_truth = "Let's try it."
translated_text, translated_tokens, attention_weights = translator(tf.constant(sentence))
print_translation(sentence, translated_text, ground_truth)
# 注意力可视化
def plot_attention_head(in_tokens, translated_tokens, attention):
    # 模型在输出中不产生<START>,我们直接忽略
    translated_tokens = translated_tokens[1:]
    
    ax = plt.gca()
    ax.matshow(attention)
    ax.set_xticks(range(len(in_tokens)))
    ax.set_yticks(range(len(translated_tokens)))
    
    labels = [vocab_chinese[label] for label in in_tokens.numpy()]
    ax.set_xticklabels(labels, rotation=90)
    
    labels = [vocab_english[label] for label in translated_tokens.numpy()]
    ax.set_yticklabels(labels)
    plt.show()
sentence = '我們試試看!'
ground_truth = "Let's try it."
translated_text, translated_tokens, attention_weights = translator(tf.constant(sentence))
in_tokens = tf.concat([tf.constant(1)[tf.newaxis], chinese_tokenizer(tf.constant(sentence)), tf.constant(2)[tf.newaxis]], axis=-1)
attention = tf.squeeze(attention_weights, 0)
plot_attention_head(in_tokens, translated_tokens, attention[0])

二、论文解读

2.1 模型架构

Transformers的优点:

  • Transformers在处理序列数据表现出色;
  • 与RNN不同的是,Transformers是可以并行处理的,这可以使模型在GPU/TPU上训练起来更加的高效;主要原因是Transformers用self-attention代替了循环结构,许多计算不彼此依赖,可以同时计算;
  • 与RNN和CNN不同的是,Transformers能够有效的捕获inputs和outputs字符序列中长距离的上下文及其依赖关系,这是CNN和RNN不足的地方,CNN收到kernel_size的限制,RNN受到distance的限制,长距离文本需要经过一系列的流程才能学到;
  • Transformers无需对数据之间的时间信息或者空间信息做出任何假设;

2.2 位置编码

词嵌入和位置编码的地方一共有两处,一处是Input,一处是Output(shifted right);两处的流程是一致的,首先进入Embedding层,然后进行位置编码,这里两处采用位置编码的方式是一样的;

位置编码的方式如下:

为什么要采用位置编码:因为模型不包含任何循环或卷积层。它需要一些方法来识别单词顺序,否则它会将输入序列看作无序的;例如:how are you, how you are, you how are,注意力机制无法识别顺序,若不采用位置编码,其得到的结果是一样的,这显然不是我们想要的结果;

为什么这样处理:首先看下面这张图,其为上述位置编码方法的可视化表示:

其生成的代码如下:

def positional_encoding(length, depth):
    depth = depth/2
    
    positions = np.arange(length)[:, np.newaxis]     # (seq, 1)
    depths = np.arange(depth)[np.newaxis, :]/depth   # (1, depth)
    
    angle_rates = 1 / (10000**depths)         # (1, depth)
    angle_rads = positions * angle_rates      # (pos, depth)
    
    pos_encoding = np.concatenate(
      [np.sin(angle_rads), np.cos(angle_rads)],
      axis=-1) 
    
    return tf.cast(pos_encoding, dtype=tf.float32)
pos_encoding = positional_encoding(length=2048, depth=512)
plt.pcolormesh(pos_encoding.numpy().T, cmap='RdBu')
plt.ylabel('Depth')
plt.xlabel('Position')
plt.colorbar()
plt.show()

当然实际每一列是交叉组合的,这里图像是把sine弄在一起;  cosine弄在一起,计算不涉及到  position内部 depth的位置关系,所以这样并没有什么实际影响;

以上是该论文位置编码方案的可视化展示,这里要明确一个合理的位置编码应该满足什么条件,合理的位置编码满足的条件如下Transformer的位置编码_transformer 位置编码器-CSDN博客

  • 每一个时间步都有一个唯一且明确的编码,其目的是分辨每一个时间步;
  • 不同长度的句子中,对应相同位置的两个时间步的距离是一定的,而且能够随着两个时间步距离的变化单调变化,其目的是知道时间步之间的关系;(这是最重要的)
  • 由于位置编码其值的大小在程序中对应权重,所以应该有上下界,不能特别大;

这里固定  Postion=1000,分别对每一个 Positon做点积,可以发现距离1000越近的  Position之间的点积就越大;又因为是三角函数正好满足所有条件,所有采用三角函数是最好的;

有些解释是这样的,但我认为不对,其解释如下:how are youhow的值可以被其他的值线性表示;

image.png

2.3 残差连接和层归一化

可以看到Add & Norm遍布了整个模型,其有什么作用呢?

残差连接如下:

image.png

对其求导与直接对 f(x)求导来说多了一个1,而正是这一个1,可以使每一次学习是更新而不是替换,这就是残差连接的好处;

归一化可以使输出的结果保持相同的尺寸;

[transformer]论文实现:Attention Is All You Need(下)https://developer.aliyun.com/article/1504070?spm=a2c6h.13148508.setting.43.36834f0eMJOehx

目录
相关文章
|
5天前
|
机器学习/深度学习 自然语言处理 数据处理
论文《Attention is All You Need》
论文《Attention is All You Need》
27 1
|
机器学习/深度学习 自然语言处理 搜索推荐
Transformer之十万个为什么?
这篇博文主要结合个人理解和思考,通过整理和自己的解释列出关于Transformer的部分重要问题(持续更新),看完后会对Transformer有个更好的理解。
Transformer之十万个为什么?
|
5天前
|
机器学习/深度学习 并行计算 数据可视化
[transformer]论文实现:Attention Is All You Need(下)
[transformer]论文实现:Attention Is All You Need(下)
23 2
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
一文介绍CNN/RNN/GAN/Transformer等架构 !!
一文介绍CNN/RNN/GAN/Transformer等架构 !!
25 4
|
5天前
|
机器学习/深度学习 存储 自然语言处理
Transformer中的FFN介绍
Transformer中的FFN介绍
63 0
Transformer中的FFN介绍
|
9月前
|
机器学习/深度学习 自然语言处理 并行计算
【Transformer系列(3)】 《Attention Is All You Need》论文超详细解读(翻译+精读)
【Transformer系列(3)】 《Attention Is All You Need》论文超详细解读(翻译+精读)
798 0
【Transformer系列(3)】 《Attention Is All You Need》论文超详细解读(翻译+精读)
|
机器学习/深度学习 编解码 自然语言处理
论文阅读笔记 | Transformer系列——Swin Transformer
论文阅读笔记 | Transformer系列——Swin Transformer
858 0
论文阅读笔记 | Transformer系列——Swin Transformer
|
计算机视觉
论文阅读笔记 | Transformer系列——Transformer in Transformer
论文阅读笔记 | Transformer系列——Transformer in Transformer
191 0
论文阅读笔记 | Transformer系列——Transformer in Transformer
|
11月前
|
机器学习/深度学习 人工智能 自然语言处理
【Deep Learning 8】Self-Attention自注意力神经网络
🍊本文主要介绍了Self-Attention产生的背景以及解析了具体的网络模型。
87 0
|
11月前
|
机器学习/深度学习 编解码
Vision Transformer(VIT)原理总结
Vision Transformer(VIT)原理总结
300 0