R语言用ARIMA模型滑动时间窗口识别网络流量时间序列异常值

简介: R语言用ARIMA模型滑动时间窗口识别网络流量时间序列异常值

全文链接:http://tecdat.cn/?p=30597


最近我们被要求解决时间序列异常检验的问题。有客户在使用大量的时间序列。这些时间序列基本上是每10分钟进行一次的网络测量,其中一些是周期性的(即带宽),而另一些则不是(即路由流量)点击文末“阅读原文”获取完整代码数据


他想要一个简单的算法来进行在线“异常值检测”。基本上,想将每个时间序列的整个历史数据保存在内存(或磁盘上),并且想检测实时场景中的任何异常值(每次捕获新样本时)。实现这些结果的最佳方法是什么?


目前正在使用移动平均线来消除一些噪音,但接下来呢?简单的事情,如标准差,...针对整个数据集效果不佳(不能假设时间序列是平稳的),想要更“准确”的东西,理想情况下是黑匣子。我们提出一些方案,例如:

将查找时间序列异常值(并选择性地在图中显示它们)。它将处理季节性和非季节性时间序列。基本思想是找到趋势和季节性成分的可靠估计并减去它们。然后找出残差中的异常值。残差异常值的检验与标准箱线图的检验相同 - 大于或低于上下四分位数的点大于1.5IQR 是假定的异常值。高于/低于这些阈值的 IQR 数量作为异常值“分数”返回。因此,分数可以是任何正数,对于非异常值,分数将为零。

异常值检测取决于数据的性质以及您愿意对它们做出的假设。 通用方法依赖于可靠的统计信息。这种方法的精神是以不受任何异常值影响的方式表征大部分数据,然后指出不符合该特征的任何单个值。

由于这是一个时间序列,因此增加了需要持续(重新)检测异常值的复杂性。如果要在系列展开时执行此操作,那么我们只能使用旧数据进行检测,而不能使用未来的数据。此外,为了防止许多重复测试,我们使用一种误报率非常低的方法。

这些注意事项建议对数据运行简单、可靠的移动窗口异常值测试。有很多可能性,但一种简单、易于理解和易于实现的是基于运行ARIMA:与中位数的中位数绝对偏差。这是数据中变异的强稳健度量,类似于标准差。离群将比中位数大几个ARIMA或更多。


读取数据


data1=read.table("正常数据.txt")
data2=read.table("异常数据.txt")
data3=read.table("异常数据第二组.txt")
#查看数据
head(data1)
head(data2)
head(data3)

绘制时间序列图


plot.ts(data1)

临时变化的离群值


在识别异常值和建议一个合适的ARIMA模型方面做得很好。见下面应用auto.arima。

点击标题查阅往期内容


python深度学习实现自编码器Autoencoder神经网络异常检测心电图ECG时间序列


01

02

03

04


拟合arima模型,得出最优参数

fit=auto.arima(data1,trace=T)
Fit

得出最优的arima模型p=1 q=1

将数据转换成time series格式


使用函数检测异常点 参数比照上面autorima得出的参数p=1 q=1

to(tsmethod = "auto.arima"
                  ,argethod=list( stepwise=FALSE ))
                  #设置环境参数 时间窗口和异常点范围阈值
window <- 30
threshold <- 3
#求出中位数几倍范围之外的样本点作为异常点
ut <- function(x) {
m = median(x);
 median(x) + threshold * median(abs(x - m))
}
#移动时间窗口查看时间序列中的符合条件的时间点
 
z <- rollaly(zoo(data2))

找出data2中符合条件的时间点作为异常序列

相关文章
|
5月前
|
网络协议 算法 Java
基于Reactor模型的高性能网络库之Tcpserver组件-上层调度器
TcpServer 是一个用于管理 TCP 连接的类,包含成员变量如事件循环(EventLoop)、连接池(ConnectionMap)和回调函数等。其主要功能包括监听新连接、设置线程池、启动服务器及处理连接事件。通过 Acceptor 接收新连接,并使用轮询算法将连接分配给子事件循环(subloop)进行读写操作。调用链从 start() 开始,经由线程池启动和 Acceptor 监听,最终由 TcpConnection 管理具体连接的事件处理。
183 2
|
5月前
基于Reactor模型的高性能网络库之Tcpconnection组件
TcpConnection 由 subLoop 管理 connfd,负责处理具体连接。它封装了连接套接字,通过 Channel 监听可读、可写、关闭、错误等
159 1
|
5月前
|
JSON 监控 网络协议
干货分享“对接的 API 总是不稳定,网络分层模型” 看电商 API 故障的本质
本文从 OSI 七层网络模型出发,深入剖析电商 API 不稳定的根本原因,涵盖物理层到应用层的典型故障与解决方案,结合阿里、京东等大厂架构,详解如何构建高稳定性的电商 API 通信体系。
|
2月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
3月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
209 2
|
3月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
4月前
|
算法 安全 网络安全
【多智能体系统】遭受DoS攻击的网络物理多智能体系统的弹性模型预测控制MPC研究(Simulink仿真实现)
【多智能体系统】遭受DoS攻击的网络物理多智能体系统的弹性模型预测控制MPC研究(Simulink仿真实现)
187 0
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
9月前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
343 9
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化