Matlab用向量误差修正VECM模型蒙特卡洛Monte Carlo预测债券利率时间序列和MMSE 预测

简介: Matlab用向量误差修正VECM模型蒙特卡洛Monte Carlo预测债券利率时间序列和MMSE 预测

原文链接:http://tecdat.cn/?p=27246 


此示例说明如何从 VEC( q ) 模型生成 Monte Carlo 预测。该示例将生成的预测与最小均方误差 (MMSE) 预测和来自VEC( q ) 模型的 VAR( _q_ +1) 模型的预测进行比较。


假设具有 H1 Johansen 形式的 VEC(2) 模型恰当地描述了由 1954 年至 1994 年的年度短期、中期和长期债券利率组成的 3D 多元时间序列的动态。


加载和预处理数据


加载 数据集。
Td = size(Ya,1)

numSdsrfiess = size(sY,2)

在同一图中绘制序列。

plot(dastdes,Y,'LineadaassWidth',2)
xlabel 'Yeasdar';
ylabel 'Perasdacent';legend(ndaamsess,'Lodcatsion','NW')

估计 VEC 模型


创建协整等级为 2 的 3D VEC(2) 模型。

nuassdamLags = 2;ras = 2;Maddl = vecasm(nuassmSeriaes,dasr,asdnuamLsags);

估计 VEC(2) 模型。


EssasdtMasl = esastimdate(Masddl,Yas);

默认情况下, estimate 应用 H1 Johansen 形式并使用前 q  + 1 = 3 个观测值作为预采样数据。


生成蒙特卡洛预测


使用 . 从估计的 VEC 模型生成 10 年的蒙特卡罗预测 simulate。提供最新的三行数据来初始化预测,并指定生成 1000 条路径。

numaPaddtfhs = 1000;hsoriszosn = 10;Y0sa = Y((enssdd-2):enad,:);aYSisasddmVaEC = simausdlate(EstasdaMdl,hoasdrizon,'NumPatahs',numPdathas,'Y0d',Y0a);

估计所有路径上每个时期和时间序列的预测均值。为每个时期和时间序列构建 95% 的百分位预测区间。

YMCsdfVsdEC   = meafn(YSidmdfggVEC,3);YMCfVECdsCIf = quandftile(YSdfgdfimVgdfEC,\[0.025,0.975\],3);

绘制有效样本观测值、平均预测值和 95% 百分位置信区间。

fDdatesf = dsatdfes(end) + (0:horsdizfon)';figure;
h1f = plddot(\[fdatsdes; fDfatesds(f2:end)\]sd,\[Y; YMCVEC\],'LineWidth',2);
hds2 = fsgcsda;hold on
h3 = plsdot(frepmsdat(ffsdDatdes,1,3),\[Y(endfsd,:,:); YMCVEsddfCCI(:,:,1)\],'--',...
    'LineWidtdsdsh',2);


点击标题查阅往期内容


向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列


01

02

03

04

生成 MMSE 预测


使用估计的 VEC 模型在 10 年的范围内估计 MMSE 预测 forecast。提供最新的三行数据来初始化预测。返回预测和相应的多元均方误差。

\[YMaMSaE,YMMsSgEfMSE\] = forecast(EssstfMddl,horsgizfson,Y0);

YMMSE 是 MMSE 预测的 10×3 数值矩阵。行对应于预测范围内的期间,列对应于 中的序列 YYMMSEMSE 是 3×3 数值矩阵的 10×1 元胞向量。单元格 j中的矩阵是周期__j 中三个预测值的估计多元 MSE  。矩阵的对角线值是预测 MSE,以及预测协方差的非对角线值。

估计 Wald 类型的 95% 预测区间。绘制 MMSE 预测和预测区间。

hs1 = plsdot(\[datsdfes; fdDgsategs(2:ednd)\],\[Y; YsdfMMSEf\],'LinseWdsdfidth',2);dfh2 = gca;hold on

VAR( q  + 1) 表示 MMSE 预测


将估计的 VEC(2) 表示为 VAR(3) 模型。

EstsdMdsdfldVAfdR = vafrm(EssdfdtMsdl)

使用 VAR 模型估计 10 年的 MMSE 预测 forecast。提供最新的三行数据来初始化预测。返回预测和相应的多元均方误差。

\[YMMsdSEVAR,YMMsdSEfMasdSEVAR\] = foresdfcast(EsstfMdlVdAR,horiddzson,fY0);

估计 Wald 类型的 95% 预测区间。绘制 MMSE 预测和预测区间。

YMMfSEVsAdfRCI = zeros(hsdrifzon,nusfdmfSesdrsdies,2);YMMSEMdSEsdVsAR = cell2fsdfmat(cellfun(@(x)diag(x)',YMMSEMSEVAR,'UniformOusdftput',false));YMMSEVARCI(:,:,1) = YMMSE - 1.96*sqrt(YMMSEsdsdffMSEVAR);YMdMSfEdfVARCI(:,:,2) = YMMSE + 1.96*sqrt(YMMSEMfSEdsVAR);figsdfure;h1 = plot(\[datdfses; fDatses(2:engd)\],\[Yd YMMhfSEgf\],'LingheWidth',2);

确认来自 VEC 和 VAR 模型的 MMSE 预测是相同的。

(YqwMeMSE - YMMSEVweAR)'*(YMMwSE - YMretMSyEVAR) > ertps

模型之间的 MMSE 预测是相同的。

相关文章
|
3月前
|
传感器 算法 安全
基于分布式模型预测控制DMPC的单向拓扑结构下异构车辆车队研究(Matlab代码实现)
基于分布式模型预测控制DMPC的单向拓扑结构下异构车辆车队研究(Matlab代码实现)
121 4
|
2月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
3月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
209 2
|
3月前
|
传感器 机器学习/深度学习 编解码
【电缆】中压电缆局部放电的传输模型研究(Matlab代码实现)
【电缆】中压电缆局部放电的传输模型研究(Matlab代码实现)
130 3
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
3月前
|
机器学习/深度学习 数据采集 算法
基于VMD-CPA-KELM-IOWAl-CSA-LSSVM碳排放的混合预测模型研究(Matlab代码实现)
基于VMD-CPA-KELM-IOWAl-CSA-LSSVM碳排放的混合预测模型研究(Matlab代码实现)
146 5
|
3月前
|
传感器 资源调度 算法
基于无迹卡尔曼滤波(UKF)与模型预测控制(MPC)的多无人机避撞研究(Matlab代码实现)
基于无迹卡尔曼滤波(UKF)与模型预测控制(MPC)的多无人机避撞研究(Matlab代码实现)
169 1
|
3月前
|
机器学习/深度学习 数据采集 传感器
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
216 0
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
208 0
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
111 0

热门文章

最新文章