【C++进阶(三)】STL大法--vector迭代器失效&深浅拷贝问题剖析

简介: 【C++进阶(三)】STL大法--vector迭代器失效&深浅拷贝问题剖析

1. 前言

在阅读本篇文章前,一定要先看前集:

vector深度剖析(上)

本章重点:

本章会重点讲解vector迭代器失效问题
以及vector中的深浅拷贝问题
并且简单完善一下vector的自我实现

在此之前,我将在文章末尾把vector

自我实现的完整代码分享给大家


2. 什么是迭代器失效?

首先我们要清楚一点:

vector的每一次扩容都不是在
原地扩容,而是新开辟一块儿空间后
将原先的数据拷贝到新空间

请看下面的代码:

vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
auto pos = find(v.begin(),v.end(),3);
v.insert(pos,30);
v.insert(pos,40);

这段代码在3前面插入一个30和40

但是这段代码会出错!

为什么呢?请看下图:

注:从四个数据插入为五个会扩容

  • 扩容前
    迭代器pos在start和finish之间
  • 扩容后
    start和finish的地址改变,pos失效
    pos不再指向现在的位置3

迭代器失效的本质原因是:

扩容后start和finish的地址发生变化

指向原先位置的迭代器统统失效!

若没发生扩容,则一切安好!


3. 迭代器失效的经典案例

除了前面讲到的insert导致迭代器失效外

erase函数也会导致迭代器失效

请看下面的案例:

vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
v.push_back(4);
v.push_back(6);
for (auto e : v)
{
  cout << e << " ";
}
cout << endl;
auto it = v.begin();
while (it != v.end())
{
  if (*it % 2 == 0)
  {
    it = v.erase(it);
  }
  ++it;
}
for (auto e : v)
{
  cout << e << " ";
}
cout << endl;

这段代码在删除顺序表中所有的偶数

但是你会发现它并没有删除完

这是为啥呢?请看下图的分析

erase删除后,后面的数据会覆盖过来
此时不让迭代器++它也指向下一个位置

注:在VS编译器中.只要使用了erase函数
编译器自动认为此位置迭代器失效
所以在VS上进行多次erase操作时
一定要不断更新迭代器的位置!


4. 迭代器失效的解决方案

  1. 对于insert来说

在pos位置使用一次insert后

不要再次直接访问pos迭代器

一定要更新了pos之后再去访问!

库中的vector提供了返回值来解决此问题:

insert会返回一个迭代器,此迭代器的
返回的是新插入元素的迭代器

请看下图理解:

所以以后我们可以这样写代码:

vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
v.push_back(5);
v.push_back(6);
v.push_back(7);
vector<int>::iterator it = v.begin();
while(it!=v.end())
{
  it = insert(it,100);
  it+=2;
}
for (auto e : v)
{
  cout << e << " ";
}
cout << endl;

在每一个元素前插入一个100

  1. 对于erase来说

删除后不用再++迭代器

只用在没删除的时候再++

vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
v.push_back(4);
v.push_back(5);
v.push_back(6);
auto it = v.begin();
while (it != v.end())
{
  if (*it % 2 == 0)
  {
    it = v.erase(it);
  }
  else
  {
    ++it;
  }
}
for (auto e : v)
{
  cout << e << " ";
}
cout << endl;

5. 对于reserve的深度剖析

众所周知,reserve只改变capacity大小

而不会改变size的大小

所以这样写代码是有问题的:

vector<int> vv;
vv.reserve(10);//开辟10份空间
for(int i=0;i<10;i++)
{
  vv[i]=i;
}

因为size此时是0,也就是有效长度为0
虽然你开辟了10份空间,但是运算符
操作[ ]的内部实现会检查下标:

T& operator[](size_t pos)
{
  assert(pos < size());
  return _start[pos];
}

所以使用reserve后直接用[ ]
访问会报错,这也是很多人会出错的地方!


6. vector深浅拷贝问题

首先来看看以下代码:

vector<vector<int>> vv(3,vector<int>(5));

这是一个二维数组,初始化为三行五列

vector<vector<int>> vv(3,vector<int>(5));
vector<vector<int>> x(vv);

这是在拷贝构造类对象x

自我实现的拷贝构造使用的是memcpy:

Vector(const Vector<T>& v)
{
  assert(v._start && v._finish && v._endofsto);
  _start = new T[v.capacity()];//给size或capacity都可以
  memcpy(_start, v._start, sizeof(T) * v.size());
}

然而memcpy是逐个字节拷贝
当数组是一维时,用memcpy没有问题
但是当数组是二维数组时,会出错!

我们在VS上调试窗口的监视查看地址信息:

会发现,虽然x的地址和vv的地址不同
但是vv中的迭代器和x中的迭代器
的地址是相同的也就是指向同一份空间

可以用下图来理解这个过程:


7. vector深浅拷贝的解决方法

由于这种深浅拷贝问题是因为memcpy

导致的,所以这里不能使用memcpy

只需要老实的使用一个for循环就能解决:

修改后的代码:

Vector(const Vector<T>& v)
{
  assert(v._start && v._finish && v._endofsto);
  _start = new T[v.capacity()];//给size或capacity都可以
  //memcpy(_start, v._start, sizeof(T) * v.size()); //使用memcpy时,数组是二维数组会发生问题
  for (size_t i = 0; i < size(); i++)
  {
    _start[i] = v._start[i];
    _finish = _start + v.size();
  }
  _endofsto = _start + v.capacity();
}

直接使用等号=是外部和内部都是
原来的一份拷贝,这样就能解决问题了


8. 总结以及拓展

vector的自我实现的目的不是
为了实现一个比库中更好的vector
而是为了带大家熟悉vector的使用
并且了解了内部实现后,以后用vector
时出现问题可以很快的排查出来!

拓展:vector自我实现全部代码链接:

gitee代码仓库


🔎 下期预告:链表接口熟悉以及模拟实现 🔍


相关文章
|
2月前
|
缓存 算法 程序员
C++STL底层原理:探秘标准模板库的内部机制
🌟蒋星熠Jaxonic带你深入STL底层:从容器内存管理到红黑树、哈希表,剖析迭代器、算法与分配器核心机制,揭秘C++标准库的高效设计哲学与性能优化实践。
C++STL底层原理:探秘标准模板库的内部机制
|
9月前
|
编译器 C++ 容器
【c++丨STL】基于红黑树模拟实现set和map(附源码)
本文基于红黑树的实现,模拟了STL中的`set`和`map`容器。通过封装同一棵红黑树并进行适配修改,实现了两种容器的功能。主要步骤包括:1) 修改红黑树节点结构以支持不同数据类型;2) 使用仿函数适配键值比较逻辑;3) 实现双向迭代器支持遍历操作;4) 封装`insert`、`find`等接口,并为`map`实现`operator[]`。最终,通过测试代码验证了功能的正确性。此实现减少了代码冗余,展示了模板与仿函数的强大灵活性。
256 2
|
9月前
|
存储 算法 C++
【c++丨STL】map/multimap的使用
本文详细介绍了STL关联式容器中的`map`和`multimap`的使用方法。`map`基于红黑树实现,内部元素按键自动升序排列,存储键值对,支持通过键访问或修改值;而`multimap`允许存在重复键。文章从构造函数、迭代器、容量接口、元素访问接口、增删操作到其他操作接口全面解析了`map`的功能,并通过实例演示了如何用`map`统计字符串数组中各元素的出现次数。最后对比了`map`与`set`的区别,强调了`map`在处理键值关系时的优势。
490 73
|
9月前
|
存储 算法 C++
【c++丨STL】set/multiset的使用
本文深入解析了STL中的`set`和`multiset`容器,二者均为关联式容器,底层基于红黑树实现。`set`支持唯一性元素存储并自动排序,适用于高效查找场景;`multiset`允许重复元素。两者均具备O(logN)的插入、删除与查找复杂度。文章详细介绍了构造函数、迭代器、容量接口、增删操作(如`insert`、`erase`)、查找统计(如`find`、`count`)及`multiset`特有的区间操作(如`lower_bound`、`upper_bound`、`equal_range`)。最后预告了`map`容器的学习,其作为键值对存储的关联式容器,同样基于红黑树,具有高效操作特性。
394 3
|
10月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
6月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
175 0
|
6月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
266 0
|
8月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
309 12
|
9月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
182 16
|
10月前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)