【AI的未来 - AI Agent系列】【MetaGPT】1. AI Agent如何重构世界

简介: 【AI的未来 - AI Agent系列】【MetaGPT】1. AI Agent如何重构世界

上篇文章我们跑起来了第一个MetaGPT程序。本文主要学习了一下理论,什么是智能体,以及智能体如何重构世界。

0. 什么是智能体

智能体 = LLM+观察+思考+行动+记忆

多智能体 = 智能体+环境+SOP+评审+路由+订阅+经济

用人话说,我理解的Agent:

  • 智能体就是像人一样,能理解现实中的事务,有记忆,会思考,会总结,会学习,像人一样会规划,会决策,会使用各种工具来完成某项任务。
  • 多智能体,就像一个团队,大了说像我们现在生活的社会,每个智能体有自己的职能和领域,人与人之间通过协作,能完成更加复杂和庞大的目标。

太理论的东西这里不展开写了,可以参考文末的链接去深入理解。下面只是摘我觉得比较有意思的几个点做一下笔记:

(1)目前LLM规划能力较弱

(2)人脑有大量如视神经、听觉神经等小网络;智能体大概率也需要大量的小模型(如在视觉、决策、路由等工作上),不能由一个大模型来主导,一不经济,二不实际

(3)工具实际就是API,支撑了智能体通往现实世界。假如实现现实世界完整表达的API都已经被实现,那么Agent理论上就可以达到全能。当然,前提是它要能够无错、娴熟的基于这些API写出完整的代码,而这代码自动撰写的missing piece就是MetaGPT

1. 用一个例子看智能体是什么

这是一个GPTs导航,帮助用户用LLM的模糊语义搜索找到全网公开的GPTS以及其体验链接。问它:“logo设计”,这个GPTs的任务就是查找logo设计相关的GPTs,并列出排名、介绍和访问链接。

从图中可以看到它的具体执行步骤:

(1)观察和思考:首先结构用户描述,产生搜索用的英文关键字

(2)工具:利用英文关键字,调用webpilot工具API进行检索

(3)观察和思考:根据返回的检索结果,llm就开始观察和思考哪个是最高匹配度的GPTs

(4)返回结果

从这些步骤就可以看出里面也是包含了规划在的。

2. AI时代智能体怎样重构世界

(1)Agent:LLM时代的新软件

99%的互联网入口将由App变为智能体:人类感知的字节数降低到极限

  • 我的理解:99%的APP都不再是APP,而是一堆API。手机上只有一个Agent智能体软件作为入口,你想要什么,它去调用一堆API来给你结果。
(2)社会协作变革:虚拟员工进入企业,红杉预计 智能体数量 五年后和人类1比1

3. 有趣的理论:大脑的System1和System2

  • 该理论意思就是:当简单问题时,我们大脑只用System1工作,例如被问“2 + 2 = ?”,我们能脱口而出,没经过思考。而被问“17 * 24 = ?”,我们的大脑就需要计算了,这就需要用到System2 - 你的大脑的另一部分,这部分更加理性,更加缓慢,进行复杂的决策,感觉更有意识。你不得不在脑海中解决这个问题,然后给出答案。
  • 现在事实证明, LLM 目前只有系统 1。它们只有这个本能部分。

参考

  1. 【直播回放】MetaGPT作者深度解析直播回放
  2. AI Agent知识体系结构
相关文章
|
1月前
|
人工智能 JavaScript 测试技术
Cradle:颠覆AI Agent 操作本地软件,AI驱动的通用计算机控制框架,如何让基础模型像人一样操作你的电脑?
Cradle 是由 BAAI‑Agents 团队开源的通用计算机控制(GCC)多模态 AI Agent 框架,具备视觉输入、键鼠操作输出、自主学习与反思能力,可操作各类本地软件及游戏,实现任务自动化与复杂逻辑执行。
165 6
|
2月前
|
人工智能 数据可视化 程序员
程序员必收藏!Github 167000+ star 的自主AI agent,全自动AI助手,全面覆盖开发效率场景
AutoGPT 是基于 GPT-4 的开源自主 AI 智能代理,全面覆盖开发效率场景。支持任务自动拆解、多轮反馈、插件扩展与记忆管理,具备持续执行能力,适合自动化测试、CI/CD、Web 数据抓取等任务。GitHub 超 176K Star,是当前最热门的 AI Agent 开源项目之一,提供 CLI 与 GUI 双界面,助力开发者提升工作效率。
323 1
|
2月前
|
人工智能 开发框架 搜索推荐
AI Agent构建强大外部工具调用能力不足,MCP Server怎样应对?MCP Serve在企业级Agent系统中的关键意义
本文AI产品专家三桥君探讨了MCP Server在企业级AI Agent系统中的关键作用,通过标准化工具接口实现AI与外部服务的无缝集成。三桥君重点阐述了分布式系统中的会话管理、状态持久化等实践方案,强调MCP Server在降低AI决策风险、提升系统可靠性方面的企业价值,为AI产品经理提供了架构设计与优化策略的实践指导。
250 0
|
3月前
|
人工智能 开发者
阿里云百炼X支付宝:「AI打赏」功能上线,Agent变现更灵活🎉🎉🎉
阿里云百炼平台联合支付宝,推出业内首个Agent「AI打赏」功能,开发者可为应用一键配置赞赏功能,用户打赏金额将直接转入开发者支付宝账户,助力快速变现。
365 1
|
29天前
|
数据采集 人工智能 定位技术
分享一个开源的MCP工具使用的AI Agent 支持常用的AI搜索/地图/金融/浏览器等工具
介绍一个开源可用的 MCP Tool Use 通用工具使用的 AI Agent (GitHub: https://github.com/AI-Agent-Hub/mcp-marketplace ,Web App https://agent.deepnlp.org/agent/mcp_tool_use,支持大模型从Open MCP Marketplace (http://deepnlp.org/store/ai-agent/mcp-server) 的1w+ 的 MCP Server的描述和 Tool Schema 里面,根据用户问题 query 和 工具 Tool描述的 相关性,选择出来可以满足
|
2月前
|
传感器 存储 人工智能
ChatGPT让AI展现‘智能’魅力,函数调用和RAG如何助力迈向AI Agent?
本文由AI产品专家三桥君探讨了AI从被动响应到主动决策的演进路径,重点分析了函数调用和RAG技术在构建AI Agent中的关键作用。文章梳理了大模型能力的迭代(原生能力与涌现能力),技术演进的三个阶段(提示工程→函数调用→RAG),并提出AI Agent需具备环境感知、推理决策和行动执行的核心要素。AI产品专家三桥君认为,未来AGI需突破跨领域学习、实时更新和安全性挑战,最终实现如"贾维斯"般的智能伙伴。
86 1
ChatGPT让AI展现‘智能’魅力,函数调用和RAG如何助力迈向AI Agent?

热门文章

最新文章