【AI大模型应用开发】1.0 Prompt Engineering(提示词工程)- 典型构成、原则与技巧,代码中加入Prompt

简介: 【AI大模型应用开发】1.0 Prompt Engineering(提示词工程)- 典型构成、原则与技巧,代码中加入Prompt

从这篇文章开始,我们就正式开始学习AI大模型应用开发的相关知识了。首先是提示词工程(Prompt Engineering)。

0. 什么是提示词(Prompt)

AI大模型火了也已经有一年多了,相信大家或多或少都听过或见过一个词叫“Prompt”,这就是提示词。

用户给大模型输入一个Prompt,大模型会根据你的Prompt给出一个回复,这是目前为止,最常用的使用大模型的方法。网络上很多号称“不用编程,轻松实现自己的应用、助理”等,都是基于Prompt来做的。即使是需要通过编程的方式来使用大模型达到自己需求的,过程中也会大量使用Prompt,将Prompt固化到程序中,作为“代码”的一部分

所以,在现在的AI时代,Prompt也可以看作是一门【编程语言】,最近新兴了一个职业叫做【提示词工程师】,也就类似是AI时代的程序员

现在Prompt工程并没有形成一套完整的标准化体系,网络上关于如何使用Prompt的文章也是铺天盖地,非常杂乱,让人眼花缭乱。因为本人想以实战为主,因此本文只是总结一下Prompt的最基本构成和原则

重要提醒

  • Promt是一个需要不断优化的过程,没有哪一篇文章或哪一个Prompt是适用于所有场景,或者拿来直接可用的。
  • 即使同一个场景,相同的Prompt,不同的大模型之间也会效果不同。如果换了大模型,提示词大概率需要重新优化
  • 所以不要光看网上的什么【最佳实践】,还是要下场实操,在不断迭代中学会优化Prompt的方法,才是最重要的。

1. 为什么Prompt会起作用 - 大模型工作原理

简要概括:它只是根据上文,猜下一个词的概率,在前几个概率大的词中选择一个输出。

2. Prompt的典型构成、原则与技巧

3. 开始使用Prompt

如果不会编程,或不想写代码,可以直接在AI软件中使用Prompt,例如:

  • ChatGPT

  • 文心一言

4. 代码中加入Prompt

4.1 OpenAI API解释

下面是上篇文章【AI大模型应用开发】0. 开篇,用OpenAI API写个Hello World !我们的“Hello World”程序,里面包含了一个函数chat.completions.create

from openai import OpenAI
# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
client = OpenAI()
response = client.chat.completions.create(
    model="gpt-3.5-turbo-1106",
    messages=[
        {
            "role": "user",
            "content": "你是谁?"
        }
    ],
)
print(response.choices[0].message.content)

该函数有几个重要参数解释下:

  • model:用来指定使用哪个模型,例如:gpt-3.5-turbo-1106
  • messages:传入大模型的prompt,prompt有三种角色:
  • system:系统指令,最重要,用于初始化GPT行为,以及规定GPT的角色、背景和后续行为模式。system是主提示,可以进行更加详细的设置。
  • user: 用户输入的信息。
  • assistant: 机器回复,由 API 根据 system 和 user 消息自动生成的。
  • temperature:参数值越小,模型就会返回越确定的一个结果。如果调高该参数值,大语言模型可能会返回更随机、创意的结果,如诗歌、写作等,可以适当提高。
  • max_token:控制了输入和输出的总的token上限,要求我们的prompt不能太长,或者控制上下文轮次!(给你估算成本和节省成本用的)
  • Top_p:与 temperature 一起称为核采样的技术,可以用来控制模型返回结果的真实性。如果你需要准确和事实的答案,就把参数值调低。如果你想要更多样化的答案,就把参数值调高一些。

Temperature和Top_p,一般建议是改变其中一个参数就行,不用两个都调整。调了效果也不一定显著;

本篇文章就先写到这里,下篇文章我们开始在代码中将Prompt用起来,并尝试将一些技巧加进去看下效果。


从今天开始,持续学习,开始搞事情。踩坑不易,欢迎关注我,围观我!

有任何问题,欢迎+vx:jasper_8017,我也是个小白,期待与志同道合的朋友一起讨论,共同进步!

相关文章
|
4天前
|
人工智能 移动开发 JavaScript
如何用uniapp打包桌面客户端exe包,vue或者uni项目如何打包桌面客户端之electron开发-优雅草央千澈以开源蜻蜓AI工具为例子演示完整教程-开源代码附上
如何用uniapp打包桌面客户端exe包,vue或者uni项目如何打包桌面客户端之electron开发-优雅草央千澈以开源蜻蜓AI工具为例子演示完整教程-开源代码附上
|
25天前
|
人工智能 数据管理 API
阿里云百炼又获大奖!阿里云百炼入选 2024 最受开发者欢迎的 AI 应用开发平台榜15强
2024年最受开发者欢迎的AI应用开发平台榜单发布,阿里云百炼入选15强。持续推动AI开发者生态建设,提供开放平台、培训支持、行业解决方案,注重数据安全与合规,致力于生态合作与共赢,加速企业数智化转型。
|
6天前
|
人工智能 前端开发 Unix
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
|
6天前
|
人工智能 开发框架 算法
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。
80 10
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
|
23小时前
|
人工智能 开发框架 安全
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
Smolagents 是 Hugging Face 推出的轻量级开源库,旨在简化智能代理的构建过程,支持多种大语言模型集成和代码执行代理功能。
98 68
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
|
24天前
|
人工智能 数据挖掘
AI长脑子了?LLM惊现人类脑叶结构并有数学代码分区,MIT大牛新作震惊学界!
麻省理工学院的一项新研究揭示了大型语言模型(LLM)内部概念空间的几何结构,与人脑类似。研究通过分析稀疏自编码器生成的高维向量,发现了概念空间在原子、大脑和星系三个层次上的独特结构,为理解LLM的内部机制提供了新视角。论文地址:https://arxiv.org/abs/2410.19750
67 12
|
26天前
|
人工智能 搜索推荐 安全
数百名研发人员用通义灵码,33%新增代码由AI生成,信也科技研发模式焕新升级
目前,信也科技数百名研发人员正在使用通义灵码,周活跃用户占比70%,新增代码中有33%由通义灵码编写,整体研发效率提升了11%,真正实现了数百研发人员开发效能的全面提升。
|
11天前
|
人工智能
阿里云领跑生成式AI工程领域,两大维度排名Gartner®生成式AI工程Market Quadrant全球第二
阿里云凭借强劲实力入选Gartner 《Innovation Guide for Generative AI Technologies》所有领域的新兴领导者象限。
|
12天前
|
人工智能 运维 Devops
CAP:Serverless + AI 让应用开发更简单
对于众多开发者而言,Serverless 架构的核心优势在于其能够无缝集成多种云产品与组件,从而使得开发者可以更加专注于核心业务逻辑和创新。此外,Serverless 架构还提供了按量付费的灵活计费模式,进一步降低了资源成本。使用云应用开发平台 CAP,在 AI 领域,企业就可以专注于模型训练、算法优化等关键任务,让 AI 应用的开发、部署以及全生命周期的管理更加简单。可以预见 Serverless 技术将催生一系列创新且有趣的应用,而这些应用将不断拓展 AI 技术的边界。
|
8天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
140 97