性能工具之emqtt-bench BenchMark 测试示例

简介: 【4月更文挑战第19天】在前面两篇文章中介绍了emqtt-bench工具和MQTT的入门压测,本文示例 emqtt_bench 对 MQTT Broker 做 Beachmark 测试,让大家对 MQTT消息中间 BenchMark 测试有个整体了解,方便平常在压测工作查阅。

一、前言

在前面两篇文章中介绍了emqtt-bench工具和MQTT的入门压测,本文示例 emqtt_bench 对 MQTT Broker 做 Beachmark 测试,让大家对 MQTT消息中间 BenchMark 测试有个整体了解,方便平常在压测工作查阅。

BenchMark 测试以 MQTT 最典型的场景来验证其性能:

  • 并发连接:使用 emqtt-bench 创建海量连接到 MQTT Broker。
  • 消息吞吐量测试:使用 emqtt-bench 在 EMQX 中创建出海量的 Qos0 消息吞吐量,分别模拟发布-订阅 1对1,1对多,多对1这 3 种类型场景。

三、机器准备

共需准备六台服务器,一台为 EMQX Broker,七台为客户端压力机。其中:

EMQX Broker(1台):

  • 系统:CentOS Linux release 7.6.1810 (Core)
  • CPU:8C
  • 内存:8GB
  • 服务端:EMQX 5.1.6
  • 压力机:emqtt-bench-0.4.18-el7-amd64.tar.gz

压力机(6台):

  • 系统:CentOS Linux release 7.6.1810 (Core)
  • CPU:8C
  • 内存:16GB
  • 压力机:emqtt-bench-0.4.18-el7-amd64.tar.gz

四、典型压测场景

1、并发连接

  • 场景名称:MQTT Broker 单节点支持 30 万级设备在线,背景连接 (只连接不发送消息)
  • 描述:模拟 30 万 MQTT TCP 并发连接,并保持在线,测试执行 1 个小时。
  • 期望结果:内网测试成功率为 100%,无连接掉线,CPU 和内存在测试期间表现平稳,没有大幅度的抖动。

拓扑结构如下:
image.png

在6台客户端压力机上同时执行该命令,在每台压力机上启动 5w 的连接数,共计 30w 的连接:

./emqtt_bench conn -h emqx-server -c 50000

客户端压力机执行截图:
image.png

EMQX Broker运行情况:
image.png

在 MQTT Broker 单节点 8C8G的情况,我压到的峰值是30W连接,超过会导致服务崩溃。

2、消息吞吐量测试

注意这里我只具体说明如何设置,并不是实际压测场景数据。

2.1 1 对 1(示例)

  • 场景名称:MQTT Broker 单节点 500 并发连接下支持1000 QoS0 消息吞吐
  • 描述:1000 MQTT TCP 连接, pub 客户端和 sub 客户端数量相同都是 500,每个接收端均订阅一个对应的发送端 pub 主题,每个 pub 客户端每秒发送 2 条 QoS 0、payload 为 256 字节(默认值)的消息。因此消息发送和接收均为每秒 1000,总的消息吞吐达到每秒 2000。测试执行 1 个小时。
  • 期望结果:内网测试成功率为 100%,无消息积压,CPU 和内存在测试期间表现平稳,没有大幅度的抖动。

拓扑结构如下:

image.png

单台sub 客户端压力机:

./emqtt_bench sub -t test_topic_%i -h emqx-server -c 500

参数说明:

  • -s:消息 Payload 的大小;单位:字节。不加默认256字节。
  • -t:topic,%i:表示客户端的序列数
  • -h:要连接的 MQTT 服务器地址
  • -c:客户端总数
[root@ bin]# ./emqtt_bench sub -t test_topic_%i -h emqx-server -c 500
Start with 8 workers, addrs pool size: 1 and req interval: 80 ms 

1s sub total=104 rate=103.28/sec
1s connect_succ total=104 rate=103.28/sec
2s sub total=200 rate=96.00/sec
2s connect_succ total=200 rate=96.00/sec
3s sub total=296 rate=96.00/sec
3s connect_succ total=296 rate=96.00/sec
4s sub total=400 rate=104.00/sec
4s connect_succ total=400 rate=104.00/sec
5s sub total=496 rate=96.00/sec
5s connect_succ total=496 rate=96.00/sec
6s sub total=500 rate=4.00/sec
6s connect_succ total=500 rate=4.00/sec

单台 pub 客户端压力机:

./emqtt_bench pub -t test_topic/%i -h  emqx-server -c 500 -I 500

参数说明:

  • -s:消息 Payload 的大小;单位:字节。不加默认256字节。
  • -t:topic,%i:表示客户端的序列数
  • -h:要连接的 MQTT 服务器地址
  • -c:客户端总数
  • -I:每间隔多少时间创建一个客户端;单位:毫秒
[root@ bin]# ./emqtt_bench pub -t test_topic/%i -h  emqx-server -c 500 -I 500
Start with 8 workers, addrs pool size: 1 and req interval: 80 ms 

1s pub total=160 rate=159.05/sec
1s connect_succ total=104 rate=103.38/sec
2s pub total=512 rate=352.00/sec
2s connect_succ total=200 rate=96.00/sec
3s pub total=1056 rate=544.00/sec
3s connect_succ total=296 rate=96.00/sec
4s pub total=1808 rate=752.00/sec
4s connect_succ total=400 rate=104.00/sec
5s pub total=2752 rate=944.00/sec
5s connect_succ total=496 rate=96.00/sec
6s pub total=3752 rate=1000.00/sec
6s connect_succ total=500 rate=4.00/sec
7s pub total=4752 rate=1000.00/sec
8s pub total=5752 rate=1000.00/sec
9s pub total=6752 rate=1000.00/sec
10s pub total=7752 rate=1000.00/sec
11s pub total=8752 rate=1000.00/sec
12s pub total=9752 rate=1000.00/sec
13s pub total=10752 rate=1000.00/sec
14s pub total=11752 rate=1000.00/sec

在订阅客户端压力机,可看到当前接收消息的速率,类似于:

12s pub total=9752 rate=1000.00/sec

MQTT Broker 运行情况:
image.png

2.2 多对1(示例)

  • 场景名称:并发连接+消息吞吐(上报)
  • 描述:501 MQTT TCP 连接, pub 客户端 500 和 sub 客户端1,接收端均订阅同一个主题,每个 pub 客户端每秒发送 2 条 QoS 0、payload 为 256 字节的消息。因此消息发送和接受均为每秒 1000,总的消息吞吐达到每秒 2000。测试执行 1 个小时。
  • 期望结果:内网测试成功率为 100%,无消息积压,CPU 和内存在测试期间表现平稳,没有大幅度的抖动。

拓扑结构如下:
在这里插入图片描述

单台 sub 客户端压力机:

./emqtt_bench sub -t test_topic -h emqx-server -c 1

参数说明:

  • -s:消息 Payload 的大小;单位:字节。不加默认256字节。
  • -t:topic,%i:表示客户端的序列数
  • -h:要连接的 MQTT 服务器地址
  • -c:客户端总数
[root@ bin]# ./emqtt_bench sub -t test_topic -h emqx-server -c 1
Start with 8 workers, addrs pool size: 1 and req interval: 80 ms 

1s sub total=1 rate=0.99/sec
1s connect_succ total=1 rate=0.99/sec

单台 pub 客户端压力机:

./emqtt_bench pub -t test_topic -h  emqx-server -c 500 -I 500

参数说明:

  • -s:消息 Payload 的大小;单位:字节。不加默认256字节。
  • -t:topic,%i:表示客户端的序列数
  • -h:要连接的 MQTT 服务器地址
  • -c:客户端总数
  • -I:每间隔多少时间创建一个客户端;单位:毫秒
root@bin]# ./emqtt_bench pub -t test_topic -h  emqx-server -c 500 -I 500
Start with 8 workers, addrs pool size: 1 and req interval: 80 ms 

1s pub total=160 rate=158.89/sec
1s connect_succ total=104 rate=103.28/sec
2s pub total=496 rate=336.00/sec
2s connect_succ total=184 rate=80.00/sec
3s pub total=1040 rate=544.00/sec
3s connect_succ total=296 rate=112.00/sec
4s pub total=1792 rate=752.00/sec
4s connect_succ total=400 rate=104.00/sec
5s pub total=2736 rate=944.00/sec
5s connect_succ total=496 rate=96.00/sec
6s pub total=3736 rate=1000.00/sec
6s connect_succ total=500 rate=4.00/sec
7s pub total=4736 rate=1000.00/sec
8s pub total=5736 rate=1000.00/sec
9s pub total=6736 rate=1000.00/sec
10s pub total=7736 rate=1000.00/sec
11s pub total=8736 rate=1000.00/sec
12s pub total=9736 rate=1000.00/sec
13s pub total=10736 rate=1000.00/sec
14s pub total=11736 rate=1000.00/sec
15s pub total=12736 rate=1000.00/sec
16s pub total=13736 rate=1000.00/sec
17s pub total=14736 rate=1000.00/sec

MQTT Broker 运行情况(举例):
image.png

2.3 1对多(示例)

  • 场景名称:消息广播
  • 描述:501 MQTT TCP 连接, pub 客户端 1 和 sub 客户端 500,接收端均订阅同一个主题,pub 客户端每秒发送 2 条 QoS 0、payload 为 256 字节的消息。因此消息发送为每秒 2,消息接收为每秒 1000,总的消息吞吐达到每秒 1002。测试执行 1 个小时。
  • 期望结果:内网测试成功率为 100%,无消息积压,CPU 和内存在测试期间表现平稳,没有大幅度的抖动。

拓扑结构如下:
image.png

单台 sub 客户端压力机:

./emqtt_bench sub -t test_topic -h emqx-server -c 500

参数说明:

  • -s:消息 Payload 的大小;单位:字节。不加默认256字节。
  • -t:topic,%i:表示客户端的序列数
  • -h:要连接的 MQTT 服务器地址
  • -c:客户端总数
[root@d bin]# ./emqtt_bench sub -t test_topic -h emqx-server -c 500
Start with 8 workers, addrs pool size: 1 and req interval: 80 ms 

1s sub total=104 rate=103.38/sec
1s connect_succ total=104 rate=103.38/sec
2s sub total=200 rate=96.00/sec
2s connect_succ total=200 rate=96.00/sec
3s sub total=296 rate=96.00/sec
3s connect_succ total=296 rate=96.00/sec
4s sub total=400 rate=104.00/sec
4s connect_succ total=400 rate=104.00/sec
5s sub total=496 rate=96.00/sec
5s connect_succ total=496 rate=96.00/sec
6s sub total=500 rate=4.00/sec
6s connect_succ total=500 rate=4.00/sec

单台 pub 客户端压力机:

./emqtt_bench pub -t test_topic -h  emqx-server -c 1 -I 500

参数说明:

  • -s:消息 Payload 的大小;单位:字节。不加默认256字节。
  • -t:topic,%i:表示客户端的序列数
  • -h:要连接的 MQTT 服务器地址
  • -c:客户端总数
  • -I:每间隔多少时间创建一个客户端;单位:毫秒
[root@ bin]# ./emqtt_bench pub -t test_topic -h  emqx-server -c 1 -I 500
Start with 8 workers, addrs pool size: 1 and req interval: 80 ms 

1s pub total=2 rate=1.99/sec
1s connect_succ total=1 rate=0.99/sec
2s pub total=4 rate=2.00/sec
3s pub total=6 rate=2.00/sec
4s pub total=8 rate=2.00/sec
5s pub total=10 rate=2.00/sec
6s pub total=12 rate=2.00/sec
7s pub total=14 rate=2.00/sec
8s pub total=16 rate=2.00/sec
9s pub total=18 rate=2.00/sec
10s pub total=20 rate=2.00/sec
11s pub total=22 rate=2.00/sec
12s pub total=24 rate=2.00/sec
13s pub total=26 rate=2.00/sec
14s pub total=28 rate=2.00/sec
15s pub total=30 rate=2.00/sec
16s pub total=32 rate=2.00/sec
17s pub total=34 rate=2.00/sec

EMQX Broker 运行情况(举例):
image.png

五、遇到的问题

client(): EXIT for {shutdown,eaddrnotavail}

在压力机连接超过5万的时候,出现了emqtt_bench客户端报错的情况。

EMQX Broker 运行情况:

image.png

单台客户端压力机报错截图:
image.png

通过设置以下内核参数解决:

#允许当前会话 / 进程打开文件句柄数:
ulimit -n 1048576

# 可用端口范围:
sudo sysctl -w net.ipv4.ip_local_port_range="1025 65534"

原因分析:
Linux 内核在这个范围内选择一个可用的端口作为本地端口去connect服务器,如果没有可用的端口可用,比如这个范围内的端口都处于如下状态中的一种:

  1. bind使用的端口
  2. 端口处于非TIME_WAIT状态
  3. 端口处于TIME_WAIT状态,但是没有启用tcp_tw_reuse,那么就会返回EADDRNOTAVAIL错误。

一般情况下,出现这个错误可用使用如下方法解决问题:

  1. 增大可选端口的范围,修改/proc/sys/net/ipv4/ip_local_port_range的值。
  2. 开启tcp_tw_reuse,允许使用TIME_WAIT状态的端口。

六、附录:调优建议

当然,我们也可以在 Beachmark 测试前就做好服务器参数调优,可以参考以下的内容。

1、关闭交换分区

Linux 交换分区可能会导致 EMQX Broker 出现不确定的内存延迟,影响系统的稳定性。 建议永久关闭交换分区。

  • 要立即关闭交换分区,执行命令 sudo swapoff -a。
  • 要永久关闭交换分区,在 /etc/fstab 文件中注释掉 swap 行,然后重新启动主机。

2、Linux 操作系统参数

系统全局允许分配的最大文件句柄数:

sysctl -w fs.file-max=2097152
sysctl -w fs.nr_open=2097152
echo 2097152 > /proc/sys/fs/nr_open

允许当前会话 / 进程打开文件句柄数:

ulimit -n 1048576

/etc/sysctl.conf

持久化 fs.file-max 设置到 /etc/sysctl.conf 文件:

fs.file-max = 1048576

/etc/systemd/system.conf 设置服务最大文件句柄数:

DefaultLimitNOFILE=1048576

/etc/security/limits.conf

/etc/security/limits.conf 持久化设置允许用户 / 进程打开文件句柄数:

*      soft   nofile      1048576
*      hard   nofile      1048576

3、TCP 协议栈网络参数

并发连接 backlog 设置:

sysctl -w net.core.somaxconn=32768
sysctl -w net.ipv4.tcp_max_syn_backlog=16384
sysctl -w net.core.netdev_max_backlog=16384

可用端口范围:

sysctl -w net.ipv4.ip_local_port_range='1024 65535'

TCP Socket 读写 Buffer 设置:

sysctl -w net.core.rmem_default=262144
sysctl -w net.core.wmem_default=262144
sysctl -w net.core.rmem_max=16777216
sysctl -w net.core.wmem_max=16777216
sysctl -w net.core.optmem_max=16777216

sysctl -w net.ipv4.tcp_rmem='1024 4096 16777216'
sysctl -w net.ipv4.tcp_wmem='1024 4096 16777216'

TCP 连接追踪设置:

sysctl -w net.nf_conntrack_max=1000000
sysctl -w net.netfilter.nf_conntrack_max=1000000
sysctl -w net.netfilter.nf_conntrack_tcp_timeout_time_wait=30

TIME-WAIT Socket 最大数量、回收与重用设置:

sysctl -w net.ipv4.tcp_max_tw_buckets=1048576

# 注意:不建议开启該设置,NAT 模式下可能引起连接 RST
# sysctl -w net.ipv4.tcp_tw_recycle=1
# sysctl -w net.ipv4.tcp_tw_reuse=1

FIN-WAIT-2 Socket 超时设置:

sysctl -w net.ipv4.tcp_fin_timeout=15

3、测试客户端设置

测试客户端服务器在一个接口上,最多只能创建 65000 连接:

# 可用端口范围:
sysctl -w net.ipv4.ip_local_port_range="500 65535"

#允许当前会话 / 进程打开文件句柄数:
echo 1048576 > /proc/sys/fs/nr_open
ulimit -n 1048576

参考资料:

相关实践学习
RocketMQ一站式入门使用
从源码编译、部署broker、部署namesrv,使用java客户端首发消息等一站式入门RocketMQ。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
目录
相关文章
|
13天前
|
设计模式 测试技术 持续交付
深入白盒测试:提升软件质量与性能的关键策略
【4月更文挑战第20天】 在软件开发的复杂世界中,确保产品的质量和性能始终是至关重要的任务。白盒测试,作为软件测试领域的重要分支,提供了对程序内部结构和逻辑的深入分析手段。本文将探讨如何通过有效的白盒测试策略来优化软件性能,减少缺陷,并最终提高用户满意度。通过剖析代码检查、单元测试、集成测试等白盒测试技术,我们将了解这些方法如何揭示潜在的问题点,并为改进提供方向。
|
6天前
|
机器学习/深度学习 数据采集 人工智能
【专栏】利用AI辅助工具提高软件测试效率与准确性
【4月更文挑战第27天】本文探讨了AI在软件测试中的应用,如自动执行测试用例、识别缺陷和优化测试设计。AI辅助工具利用机器学习、自然语言处理和图像识别提高效率,但面临数据质量、模型解释性、维护更新及安全性挑战。未来,AI将更注重用户体验,提升透明度,并在保护隐私的同时,通过联邦学习等技术共享知识。AI在软件测试领域的前景广阔,但需解决现有挑战。
|
1天前
|
机器学习/深度学习 人工智能 测试技术
提升软件测试效率与准确性的策略与工具
【5月更文挑战第2天】 在软件开发生命周期中,测试阶段是确保产品质量的关键。然而,传统的测试方法往往耗时且容易出错。本文将探讨一系列现代软件测试策略和工具,旨在提高测试效率和准确性。我们将分析自动化测试框架、持续集成(CI)、测试驱动开发(TDD)以及人工智能(AI)在测试中的应用,并讨论如何结合这些技术和方法来优化测试流程。
|
3天前
|
敏捷开发 监控 测试技术
探索自动化测试工具Selenium Grid的高效集成策略
【4月更文挑战第30天】在现代Web应用的快速迭代和持续部署中,测试自动化已成为确保产品质量的关键。Selenium Grid作为一款支持多种浏览器和操作系统的测试工具,提供了并行执行测试用例的能力,极大地提升了测试效率。本文将深入探讨如何高效地将Selenium Grid集成到现有的测试框架中,以及实施过程中的最佳实践,帮助团队最大化测试覆盖率,同时降低资源消耗。
|
3天前
|
中间件 测试技术 API
探索自动化测试工具的新边界:Selenium与Appium的集成实践
【4月更文挑战第30天】 随着移动应用和Web应用的不断融合,传统的自动化测试工具需要适应新的测试环境。本文将详细分析Selenium和Appium这两款流行的自动化测试工具的集成实践,探讨如何构建一个能够同时支持Web和移动端应用的自动化测试框架。通过对比两者的技术架构、功能特性以及在实际项目中的集成过程,我们旨在为读者提供一个清晰的指导,帮助他们在复杂的应用环境中实现高效、稳定的自动化测试流程。
|
3天前
|
机器学习/深度学习 人工智能 机器人
深入理解自动化测试:框架、工具与实践
【4月更文挑战第30天】 在现代软件开发周期中,自动化测试已成为确保产品质量和加速市场交付的关键环节。本文将探讨自动化测试的核心框架、常用工具以及实际应用的最佳实践,旨在为软件测试工程师提供深入的理解和有效的策略,以改进其自动化测试流程。我们将分析几种流行的测试自动化框架,包括Selenium、Appium和JUnit,并讨论如何根据项目需求选择适合的工具。此外,文中还将介绍持续集成(CI)环境下的自动化测试策略,以及如何通过测试结果分析和报告来优化测试过程。目标是帮助读者构建更健壮、更高效的自动化测试系统。
|
3天前
|
分布式计算 Hadoop 测试技术
|
3天前
|
分布式计算 Hadoop 测试技术
|
3天前
|
分布式计算 Hadoop 测试技术
Hadoop节点网络性能的带宽测试
【4月更文挑战第23天】
13 1
|
4天前
|
IDE 测试技术 持续交付
探索自动化测试工具Selenium的高效应用
【4月更文挑战第29天】 在快速迭代的软件开发过程中,高效的测试策略是确保产品质量的关键。本文将深入探讨如何利用自动化测试工具Selenium来提高软件测试的效率和准确性。通过介绍Selenium的核心功能、脚本编写技巧以及与持续集成环境的集成方法,我们旨在为读者提供一个全面的Selenium应用指南。此外,我们还将讨论常见的问题解决策略,并通过案例分析展示如何有效地运用Selenium进行复杂的Web应用测试。