R语言基于Bagging分类的逻辑回归(Logistic Regression)、决策树、森林分析心脏病患者

简介: R语言基于Bagging分类的逻辑回归(Logistic Regression)、决策树、森林分析心脏病患者

今天,我们将看下bagging 技术里面的启发式算法。

通常,bagging 与树有关,用于生成森林。但实际上,任何类型的模型都有可能使用bagging 。回顾一下,bagging意味着 "boostrap聚合"。因此,考虑一个模型m:X→Y。让 表示从样本中得到的m的估计

现在考虑一些boostrap样本, ,i是从{1,⋯,n}中随机抽取的。基于该样本,估计 。然后抽出许多样本,考虑获得的估计值的一致性,使用多数规则,或使用概率的平均值(如果考虑概率主义模型)。因此

Bagging逻辑回归

考虑一下逻辑回归的情况。为了产生一个bootstrap样本,自然要使用上面描述的技术。即随机抽取一对(yi,xi),均匀地(概率为 )替换。这里考虑一下小数据集。对于bagging部分,使用以下代码

for(s in 1:1000){
  df_s = df\[sample(1:n,size=n,replace=TRUE)
  logit\[s\]= glm(y~., df_s, family=binomial

然后,我们应该在这1000个模型上进行汇总,获得bagging的部分。

unlist(lapply(1:1000,function(z) predict(logit\[z\],nnd))}

我们现在对任何新的观察都有一个预测

vv = outer(vu,vu,(function(x,y) mean(pre(c(x,y)))
contour(vu,vu,vv,levels = .5,add=TRUE)

Bagging逻辑回归

另一种可用于生成bootstrap样本的技术是保留所有的xi,但对其中的每一个,都(随机地)抽取一个y的值,其中有

因此

因此,现在Bagging算法的代码是

glm(y~x1+x2, df, family=binomial)
for(s in 1:100)
  y = rbinom(size=1,prob=predict(reg,type="response")
  L\_logit\[s\] = glm(y~., df\_s, family=binomial)

bagging算法的agg部分保持不变。在这里我们获得

vv = outer(vu,vu,(function(x,y) mean(pre(c(x,y)))))
contour(vu,vu,vv,levels = .5,add=TRUE)

当然,我们可以使用该代码,检查预测获得我们的样本中的观察。

在这里考虑心肌梗塞数据。

数据

我们使用心脏病数据,预测急诊病人的心肌梗死,包含变量:

  1. 心脏指数
  2. 心搏量指数
  3. 舒张压
  4. 肺动脉压
  5. 心室压力
  6. 肺阻力
  7. 是否存活

其中我们有急诊室的观察结果,对于心肌梗塞,我们想了解谁存活下来了,得到一个预测模型

reg = glm(as.factor(PRO)~., carde, family=binomial)
for(s in 1:1000){
  L\_logit\[s\] = glm(as.factor(PRO)~., my\_s, family=binomial)
}
unlist(lapply(1:100,predict(L_logit\[z\],newdata=d,type="response")}

对于第一个观察,通过我们的1000个模拟数据集,以及我们的1000个模型,我们得到了以下死亡概率的估计。

v_x = p(x)
hist(v_x,proba=TRUE,breaks=seq(,by.05),=",="",
segments(mean(v\_x),0,mean(v\_x,5="=2)

因此,对于第一个观察,在78.8%的模型中,预测的概率高于50%,平均概率实际上接近75%。

或者,对于样本22,预测与第一个非常接近。

histo(23)
histo(11)

我们在此观察到

Bagging决策树

Bagging是由Leo Breiman于1994年在Bagging Predictors中介绍的。如果说第一节描述了这个程序,那么第二节则介绍了 "Bagging分类树"。树对于解释来说是不错的,但大多数时候,它们是相当差的预测模型。Bagging的想法是为了提高分类树的准确性。

bagging 的想法是为了生成大量的树

for(i in 1:12)
  set.seed(sed\[i\])
idx = sample(1:n, size=n, replace=TRUE)
cart =  rpart(PR~., md\[idx,\])

这个策略其实和以前一样。对于bootstrap部分,将树存储在一个列表中

for(s in 1:1000)
idx = sample(1:n, size=n, replace=TRUE)
  L_tree\[\[s\]\] = rpart(as.(PR)~.)

而对于汇总部分,只需取预测概率的平均值即可

p = function(x){
  unlist(lapply(1:1000,function(z) predict(L_tree\[z\],newdata,)\[,2\])

因为在这个例子中,我们无法实现预测的可视化,让我们在较小的数据集上运行同样的代码。

for(s in 1:1000){
  idx = sample(1:n, size=n, replace=TRUE)
  L_tree\[s\] = rpart(y~x1+x2,
}
  unlist(lapply(1:1000,function(z) predict(L_tree\[\[z\]\])
outer(vu,vu,Vectorize(function(x,y) mean(p(c(x,y)))

从bagging到森林

在这里,我们生成了很多树,但它并不是严格意义上的随机森林算法,正如1995年在《随机决策森林》中介绍的那样。实际上,区别在于决策树的创建。当我们有一个节点时,看一下可能的分割:我们考虑所有可能的变量,以及所有可能的阈值。这里的策略是在p中随机抽取k个变量(当然k<p,例如k=sqrt{p})。这在高维度上是有趣的,因为在每次分割时,我们应该寻找所有的变量和所有的阈值,而这可能需要相当长的时间(尤其是在bootstrap 程序中,目标是长出1000棵树)。


相关文章
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
9月前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
344 9
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
326 3
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
349 3