十分钟带你复现YOLOv8

简介: 十分钟带你复现YOLOv8

YOLO 是 Joseph Redmon 等人于 2015 年提出的基于单个神经网络的目标检测算法。YOLO 的全称是 You Only Look Once,正是其自身特点的高度概括。

YOLOv8 是 Ultralytics 在 2023 年初推出的一个重大更新版本,建立在以前 YOLO 版本成功的基础上,基于深度学习和计算机视觉的前沿进展,采用最先进的 SOTA 模型,引入了新的功能和改进,进一步提升了目标检测的性能和灵活性,提供了无与伦比的速度和准确性。

YOLOv8 的精简设计使其适用于各种应用,并且可以轻松适应不同的硬件平台,从边缘设备到云 API,使其成为各种物体检测与跟踪、实例分割、图像分类和姿态估计任务的绝佳选择。

YOLOv8 共有 5 个不同大小的预训练模型,由小到大分别是 n、s、m、l 和 x,模型越大其检测效果越好,但模型越大参数量越大、运行速度越慢,训练时需要消耗的资源也越多。

复现环境

  • 操作系统:Windows11
  • 软件工具:PyCharm2023 + Anaconda3

参考来源

  • 官方文档:https://docs.ultralytics.com/
  • 开源仓库:https://github.com/ultralytics/ultralytics
  • 预训练权重:https://github.com/ultralytics/assets/releases

前期准备

  • 从开源仓库下载源码:

  • 下载最小模型的预训练权重文件:

  • 将权重文件直接放在 ultralytics 仓库下即可:

配置环境

  • 打开 Anaconda Prompt,创建一个新环境,官方要求 Python 版本要大于 3.8:
conda create -n env_yolov8 python==3.9

  • 提示要下载一些包,输入 y 继续:

  • 等待包下载完毕,环境创建完成:

  • 激活新创建的环境:
conda activate env_yolov8

  • 输入 nvidia-smi 查看 GPU 支持的最高 CUDA 版本:


  • 下载 Pytorch,打开官网:https://pytorch.org/
  • CUDA 版本选择 12.1,复制下载命令:

  • 粘贴到 Anaconda Prompt 运行下载命令:

  • 等待下载完成,下载时间略长:

  • 用 PyCharm 打开 YOLOv8 源码:

  • 点击右下角 Python 解释器–>添加新的解释器–>添加本地解释器:

  • 切换到我们新创建的环境:


  • 打开 Pycharm 终端:

  • 输入命令下载 ultralytics 包:
pip install ultralytics
• 1


  • 如果下载速度较慢,可换用清华源下载:
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple/


  • 等待下载完成:

复现功能

  • 复现目标检测功能,直接在终端运行命令:
yolo predict model=yolov8n.pt source=./ultralytics/assets/bus.jpg

  • 运行结果在 run 文件夹 detect 里:

  • 复现实例分割功能,直接在终端运行命令:
yolo predict model=yolov8n-seg.pt source=./ultralytics/assets/bus.jpg
  • 运行结果在 run 文件夹 segment 里:

  • 复现姿态检测功能,直接在终端运行命令:
yolo predict model=yolov8n-pose.pt source=./ultralytics/assets/bus.jpg


  • 运行结果在 run 文件夹 pose 里:

模型训练

  • 未完待续……

更多内容

  • CSDN博客:@Hello阿尔法
  • 哔哩哔哩:@Hello阿尔法
  • 知乎:@Hello阿尔法
相关文章
|
XML 存储 JSON
YOLOv5的Tricks | 【Trick15】使用COCO API评估模型在自己数据集的结果
YOLOv5的Tricks | 【Trick15】使用COCO API评估模型在自己数据集的结果
2984 0
YOLOv5的Tricks | 【Trick15】使用COCO API评估模型在自己数据集的结果
|
并行计算
最新YOLOv8(2023年8月版本)安装配置!一条龙傻瓜式安装,遇到问题评论区提问
最近需要使用YOLOv8,百度了一下现在网上大多数教程都是比较早期的教程,很多文件已经大不相同,于是我根据官方readme文档,总结了一套安装方法,只需要按照本教程,复制每一段代码,按照教程配置好相应文件即可直接使用。
8512 2
|
XML 数据格式 Python
Labelimg标注自己的数据集,及如何划分训练集和验证集,应用于Yolov5
Labelimg标注自己的数据集,及如何划分训练集和验证集,应用于Yolov5
3343 0
|
XML 机器学习/深度学习 数据格式
YOLOv8训练自己的数据集+常用传参说明
YOLOv8训练自己的数据集+常用传参说明
19669 1
|
11月前
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
18313 59
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
机器学习/深度学习 机器人 数据库
FoundationPose复现及Realsense应用
文章概述了FoundationPose项目,一个由Nvidia开发的用于新对象6D姿态估计和跟踪的统一模型,支持模型基础和无模型设置,通过合成数据和大型语言模型实现强泛化能力,并提供了复现和应用的详细步骤。
1199 0
FoundationPose复现及Realsense应用
|
10月前
|
存储 分布式计算 关系型数据库
架构/技术框架调研
本文介绍了微服务间事务处理、调用、大数据处理、分库分表、大文本存储及数据缓存的最优解决方案。重点讨论了Seata、Dubbo、Hadoop生态系统、MyCat、ShardingSphere、对象存储服务和Redis等技术,提供了详细的原理、应用场景和优缺点分析。
|
机器学习/深度学习 存储 测试技术
【YOLOv8改进】iRMB: 倒置残差移动块 (论文笔记+引入代码)
该专栏聚焦YOLO目标检测的创新改进与实战案例,提出了一种融合CNN和Transformer优点的轻量级模型——倒置残差移动块(iRMB)。iRMB旨在平衡参数、运算效率与性能,适用于资源有限的移动端。通过集成多头自注意力和卷积,iRMB在ImageNet-1K等基准上超越SOTA,同时在iPhone14上展现出比EdgeNeXt快2.8-4.0倍的速度。此外,iRMB设计简洁,适用于各种计算机视觉任务,展示出良好的泛化能力。代码示例展示了iRMB模块的实现细节。更多详细信息和配置可在相关链接中找到。
|
11月前
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
17687 0
|
编解码 Go 文件存储
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络

热门文章

最新文章